首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An anaerobic, motile, gram-negative, rod-shaped bacterium is described which degrades benzoate in coculture with an H2-utilizing organism and in the absence of exogenous electron acceptors such as O2, SO 4 = or NO 3 - . The bacterium was isolated from a municipal primary, anaerobic sewage digestor using anaerobic roll-tube medium with benzoate as the main energy source and in syntrophic association with an H2-utilizing sulfate-reducing Desulfovibrio sp. which cannot utilize benzoate or fatty acids apart from formate as energy source. The benzoate utilizer produced acetate (3 mol/mol of substrate degraded) and presumably CO2 and H2, or formate from benzoate. In media without sulfate and with Methanospirillum hungatei (a methanogen that utilizes only H2–CO2 or formate as the energy source) added, 3 mol of acetate and 0.7 mol of methane were produced per mol of benzoate and CO2 was probably formed. Low numbers of Desulfovibrio sp. were present in the methanogenic coculture and a pure coculture of the benzoate utilizer with M. hungatei was not obtained. The generation times for growth of the sulfate-reducing and methanogenic cocultures were 132 and 166h, respectively. The benzoate utilizer did not utilize other common aromatic compounds, C 3 - –C7 monocarboxylic acids, or C4-C6 dicarboxylic acids for growth, nor did it appear to use SO 4 = , NO 3 - or fumarate as alternative electron acceptors. Addition of H2 inhibited growth and benzoate degradation.  相似文献   

2.
A stable, syntrophic benzoate-degrading bacterial consortium was enriched from sewage sludge. It oxidized benzoate or 3-phenylpropionate to acetate, H2 and CO2. As hydrogen scavengers Methanospirillum hungatei and Desulfovibrio sp. were present. The benzoate-degrading bacteria of this syntrophic culture and of Syntrophus buswelli were able to grow with benzoate/crotonate or crotonate alone in the absence of a hydrogen-utilizing partner organism. If crotonate was the only substrate, acetate and butyrate were produced, while during growth on benzoate or 3-phenylpropionate crotonate served as a reducible co-substrate and was exclusively converted to butyrate. In the presence of crotonate interspecies hydrogen transfer was not necessary as a hydrogen sink. The benzoate degrader was isolated as a pure culture with crotonate as the only carbon source. The pure culture could also grow with benzoate/crotonate or 3-phenylpropionate/crotonate. The effect of high concentrations of crotonate and of acetate or butyrate on growth of the benzoate degrader was investigated. The benzoate degrader was compared with S. buswellii for its morphology, physiology and DNA base composition. Except for the fact that S. buswellii was also able to grow on cinnamate, no differences between the two organisms were detected. The isolate is named S. buswelli, strain GA.  相似文献   

3.
A dialysis culture device was used for growth of syntrophic fatty acid-oxidizing and ethanol-oxidizing anaerobic bacteria. A pure culture of the fatty acid oxidizer Clostridium bryantii was grown inside dialysis tubing which was surrounded by a pure culture of Desulfovibrio vulgaris. The same apparatus was used for the syntrophic cultivation of Pelobacter acetylenicus and Acetobacterium woodii with ethanol as substrate. In both cases, substrate degradation and product formation were about half as fast as with the homogeneously mixed control cultures. In the compartment of the hydrogen producer, the concentration of free hydrogen during syntrophic ethanol degradation was about 10 times as high as in that of the hydrogen utilizer, whereas the homogeneously mixed culture exhibited an intermediate hydrogen partial pressure.  相似文献   

4.
Fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 130-fold under anoxic conditions. The native enzyme had an apparent molecular mass of 114 kDa and was composed of two subunits of 60 kDa. The enzyme exhibited maximum activity at pH 8.5 and approximately 54° C. The K m values for fumarate and l-malate were 0.25 mM and 2.38 mM, respectively. Fumarase was inactivated by oxygen, but the activity could be restored by addition of Fe2+ and β-mercaptoethanol under anoxic conditions. EPR spectroscopy of the purified enzyme revealed the presence of a [3Fe-4S] cluster. Under reducing conditions, only a trace amount of a [4Fe-4S] cluster was detected. Addition of fumarate resulted in a significant increase of this [4Fe-4S] signal. The N-terminal amino acid sequence showed similarity to the sequences of fumarase A and B of Escherichia coli (56%) and fumarase A of Salmonella typhimurium (63%). Received: 15 September 1995 / Accepted: 13 November 1995  相似文献   

5.
A co-culture of bacteria responsible for the conversion of butyrate to methane and CO2 was isolated from a cattle-waste treatment plant. The non-methanogenic partner of the co-culture was Syntrophomonas wolfei and the methanogenic partner was Methanobacterium formicicum. Although butyrate degradation occurred at pH<6.0 and below 45°C, methanogenesis was observed at pH>6.5 and above 40°C.  相似文献   

6.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

7.
We have previously shown the existence of two separate enzymes for the synthesis of palmitoyl-CoA and lignoceroyl-CoA in rat brain microsomal membranes (1). Palmitoyl-CoA ligase activity was solubilized from brain microsomal membranes with 0.3% Triton X-100 and purified 93-fold by a combination of protein purification techniques. The Km values for the substrates palmitic acid, CoASH and ATP were 11.7 microM, 5.88 microM and 3.77 mM respectively. During activation of palmitic acid ATP is hydrolyzed to AMP and pyrophosphate, as evidenced by the inhibition of this activation by 5 mM concentrations of AMP, pyrophosphate or AMP and pyrophosphate to 70%, 60% and 85% respectively. The divalent metal ion Mg2+ was required for activity; its replacement with Mn2+ resulted in a 35% decrease in activity. Palmitoyl-CoA ligase activity was inhibited by the addition of oleic or stearic acids whereas addition of lignoceric acid or behenic acid had no effect. This supports our previous observation that palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes in rat brain microsomal membranes.  相似文献   

8.
A motile curved rod-shaped bacterium was isolated in pure culture from a glycolate-fermenting mixed culture by using citrate as the growth substrate. The purified strain, designated 19gly1, was an obligate anaerobe growing optimally in freshwater medium at neutral pH and 37°C. The organism was gram-negative, lacked cytochromes, and had a DNA mol % G+C ratio of 36. Strain 19gly1 grew on only a limited range of substrates, including citrate and succinate. No growth occurred on glycolate, on carbohydrates or on H2 plus CO2. Metabolism was by fermentation only. The strain was different to previously described species of bacteria and assigned to the heterogeneous assemblage of Campylobacter-like strains. Strain 19gly1 has been deposited with the Deutsche Sammlung von Mikroorganismen as DSM 6222.  相似文献   

9.
The enzyme catalysing the first step in the anaerobic degradation pathway of phenylacetate was purified from a denitrifying Pseudomonas strain KB 740. It catalyses the reaction phenylacetate+CoA+ATP phenylacetyl-CoA+AMP+PPi and requires Mg2+. Phenylacetate-CoA ligase (AMP forming) was found in cells grown anaerobically with phenylacetate and nitrate. Maximal specific enzyme activity was 0.048 mol min-1 x mg-1 protein in the mid-exponential growth phase. After 640-fold purification with 18% yield, a specific activity of 24.4 mol min-1 mg-1 protein was achieved. The enzyme is a single polypeptide with Mr of 52 ±2 kDa. The purified enzyme shows high specificity towards the aromatic inducer substrate phenylacetate and uses ATP preferentially; Mn2+ can substitute for Mg2+. The apparent K m values for phenylacetate, CoA, and ATP are 60, 150, and 290 M, respectively. The soluble enzyme has an optimum pH of 8.5, is insensitive to oxygen, but is rather labile and requires the presence of glycerol and/or phenylacetate for stabilization. The N-terminal amino acid sequence showed no homology to other reported CoA-ligases. The expression of the enzye was studied by immunodetection. It is present in cells grown anaerobically with phenylacetate, but not with mandelate, phenylglyoxylate, benzoate; small amounts were detected in cells grown aerobically with phenylacetate.  相似文献   

10.
The oxygen-sensitive 4-hydroxybenzoate decarboxylase (4OHB-DC) activity from a phenol-carboxylating coculture, consisting of Clostridium-like strain 6 and an unidentified strain 7, was studied. Assays done with cell extracts showed that the optimal pH was 5.0-6.5 and the Km was 5.4 mM. The activity decreased by 50% in the presence of 5 mM EDTA, and it was restored and even enhanced by the addition of Mg++, Mn++, Zn++, or Ca++. After purification, the molecular mass of the enzyme was estimated as 420 kDa by gel chromatography, and as 119 kDa by SDS-PAGE, suggesting a homotetrameric structure. Its pI was 5.6. The N-terminal amino acid sequence showed 95% and 76% homology with the pyruvate-flavodoxin oxidoreductase (nifJ gene product) from Enterobacter agglomerans and Klebsiella pneumoniae, respectively. The purified enzyme also slowly catalyzed the reverse reaction, that is the phenol carboxylation. These characteristics suggest that this enzyme is different from other known decarboxylases. This includes the 4OHB-DC from Clostridium hydroxybenzoicum, which is the only one that had been purified before.  相似文献   

11.
Abstract Spore-forming sulfate-reducing bacteria (SRB) were enriched selectively from various kinds of aerobic soils with fatty acids as the sole carbon and energy source. A Gram-negative motile rod-shaped bacterium, which produced gas vacuoles during sporulation was isolated. It degraded alcohols, aromatic and n-fatty acids (up to C18) except for propionate, completely to CO2. Sulfate, sulfite, thiosulfate or elemental sulfur served as electron acceptors. Because of its sensitivity to H2S, the isolate never produced more than 8 mM dissolved sulfide at pH 7.0. G + C-content of the DNA was 48.0 mol %. The isolated strain Pato is described as a new species Desulfotomaculum sapomandens .  相似文献   

12.
A DNA ligase has been purified approximately 2,100-fold, to near-homogeneity, from Drosophila melanogaster 6-12-h embryos and was shown to catalyze the formation of 3',5'-phosphodiester bonds. Polypeptides with molecular weights 83,000, 75,000, and 64,000 were observed when the purified enzyme was electrophoresed under denaturing conditions. These polypeptides were shown by partial proteolysis studies and two-dimensional gel analysis to be structurally related. The two smaller polypeptides were presumably derived from the largest, 83,000 molecular weight protein, by proteolysis during purification or in vivo. All three polypeptides formed enzyme-adenylylate complexes in the absence of DNA. Drosophila DNA ligase had a Stokes radius of 45 A, a sedimentation coefficient of 4.3 S, and a frictional ratio of 1.6, yielding a calculated molecular weight of 79,800. These studies indicate that DNA ligase from Drosophila embryos is a monomer. The purified ligase was free of detectable ATPase, nuclease, topoisomerase, and DNA polymerase activities. The enzyme exhibited an absolute requirement for ATP in the joining reaction. A divalent metal was required and N-ethylmaleimide inhibited the reaction. Formation of phosphodiester bonds by Drosophila ligase required the presence of 5'-phosphoryl and 3'-hydroxyl termini. The purified enzyme restored biological activity to endonucleolytically cleaved pBR322 DNA. The specific activity of Drosophila DNA ligase was highest in unfertilized eggs. Developing embryos had 5-10-fold more ligase activity than at any later time in development.  相似文献   

13.
Flagella from Roseburia cecicola, an obligately anaerobic bacterium originally isolated from murine caecal mucosa, were purified by mechanical shearing followed by differential centrifugation. Purity of the flagellar preparation was determined by polyacrylamide gel electrophoresis, electron microscopy and chemical analysis. The flagella were composed of a single protein subunit (flagellin) with an estimated molecular weight of 42 000. The amino acid composition of the flagellin was similar to that of some facultatively anaerobic and aerobic bacteria.  相似文献   

14.
15.
Benzoate:CoA ligase (BZL) was partially purified from flowers of the annual California plant Clarkia breweri. BZL catalyzes the formation of benzoyl-CoA and anthraniloyl-CoA, important intermediates for subsequent acyltransferase reactions in plant secondary metabolism. The native enzyme is active as a monomer with a molecular mass of approximately 59-64.5 kDa, and it has K(m) values of 45, 95, and 130 microM for benzoic acid, ATP, and CoA, respectively. BZL is most active in the pH range of 7.2-8.4, and its activity is strictly dependent on certain bivalent cations. BZL is an AMP-forming enzyme. Overall, its properties suggest that it is related to the family of CoA ligase enzymes that includes the plant enzyme 4-hydroxycinnamate:CoA ligase.  相似文献   

16.
17.
18.
Summary Isolation and enrichment cultures were made for anaerobic cellulose utilizing micro-organisms from non-ruminant sources. Stable mixed cultures were developed which degraded pure cellulose (wet-milled filter paper) in a defined mineral salts medium. Components of the mixed cultures lost viability in monoculture when grown on cellulose. Growth on cellulose was stimulated at low oxygen concentrations, when increased cellulase activity and increased volatile fatty acid production occurred.Low concentrations (0.1–3 mM) of cellobiose, and to a lesser extent, glucose stimulated solubilization of cellulose by the cultures, but higher concentrations had an inhibitory effect.Growth on cellulose was accompanied by production of acetic, propionic and butyric acids. The production and profile of the acids was stable and characteristic of the culture. When an open nonaseptic fermentation was employed, the fatty acid profile was variable and also included valeric acid.  相似文献   

19.
An anaerobic, mesophilic, syntrophic benzoate-degrading bacterium, designated strain FB(T), was isolated from methanogenic sludge which had been used to treat wastewater from the manufacture of terephthalic acid. Cells were non-motile gram-positive rods that formed spores. The optimum temperature for growth was 35-40 degrees C, and the optimum pH was 7.0-7.2. A co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei converted benzoate to acetate, carbon dioxide, and methane. Butyrate transiently accumulated at a high concentration of 2.5 mM during degradation. Besides benzoate, no other compound tested supported growth of the co-culture. Crotonate supported growth of strain FB(T) in pure culture. Furthermore, the strain degraded benzoate in pure culture with crotonate as co-substrate to produce acetate and butyrate. The strain was not able to utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, or Fe(III) as electron acceptor. The G+C content of the DNA was 46.8 mol%. Strain FB(T) contained MK-7 as the major quinone and C(16:1) as the major fatty acid. 16S rDNA sequence analysis revealed that the strain was a member of the genus Sporotomaculum, even though it exhibited significant differences, such as the capacity for syntrophic growth, to the known member of the genus. Hence, we propose the name Sporotomaculum syntrophicum sp. nov. for strain FB(T). The type strain is strain FB(T) (DSM 14795, JCM 11475).  相似文献   

20.
A DNA ligase has been purified approximately 5000-fold, to near homogeneity, from the trypanosomatid Crithidia fasciculata. The purified enzyme contains polypeptides with molecular masses of 84 and 80 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both polypeptides formed enzyme-adenylate complexes in the absence of DNA, contained an epitope that is highly conserved between human and bovine DNA ligase I and yeast and vaccinia virus DNA ligases, and were identified in fresh lysates of C. fasciculata by antibodies raised against the purified protein. Hydrodynamic measurements indicate that the enzyme is an asymmetric protein of approximately 80 kDa. The purified DNA ligase can join oligo(dT) annealed to poly(dA), but not oligo(dT) annealed to poly(rA), and can ligate blunt-ended DNA fragments. The enzyme has a low Km for ATP of 0.3 microM. The DNA ligase absolutely requires ATP and Mg2+, and is inhibited by N-ethylmaleimide and by KCI. Substrate specificity, Km for ATP, and the conserved epitope all suggest that the purified enzyme is the trypanosome homologue of DNA ligase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号