首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for the estimation of receptor site densities in purified canine cardiac sarcolemmal vesicles is described. Canine sarcolemmal vesicles, purified by the method of Jones et al. (Jones, L.R., Maddock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980) had high (Na+ + K+)-ATPase specific activity (127 +/- 1.9 mumol Pi/mg per h). Total phospholipid content, estimated by measurements of total phosphorus and total fatty acid contents, was 3.09 mumol/mg. Saturation isotherms for several receptor ligands gave the following values for Kd and Bmax: ouabain 32.6 +/- 2.7 nM, 365 +/- 59 pmol/mg; quinuclidinyl benzilate 0.055 +/- 0.010 nM, 5.8 +/- 0.7 pmol/mg; dihydroalprenolol 4.6 +/- 1.0 nM, 2.2 +/- 0.2 pmol/mg; and nitrendipine 0.21 +/- 0.04 nM, 0.93 +/- 1.04 pmol/mg. Membrane phospholipid surface area per ligand-binding sites was estimated from the Bmax values for each receptor ligand utilizing 3.09 mumol phospholipid/mg and 60 A2 as the average surface area occupied by each phospholipid molecule. The following receptor site densities per micrometer 2 phospholipid surface were obtained: ouabain, 400; quinuclidinyl benzilate, 6; dihydroalprenolol, 2; and nitrendipine, 1. As the surface area contributed by protein was estimated to be less than 20% of the lipid surface area, these values must be reduced by approx. 20% to estimate site densities per micrometer 2 membrane surface. These data demonstrate much lower beta-adrenergic and muscarinic receptor density compared to that of Na+ pump sites.  相似文献   

2.
In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.  相似文献   

3.
Anhydrolevuglandin E2 (AnLGE2) is closely related to prostaglandin E2 (PGE2) and has been found to inhibit the uterotonic activity of PGE2. The binding of PGE2 and its inhibition by AnLGE2 has been determined in rat uterine membrane fractions. AnLGE2 inhibited the binding of 3HPGE2 in a dose related fashion. 3HAnLGE2 also binds to rat uterine membrane fractions and its binding is inhibited by PGE2 in a dose related fashion. These data support previous physiological observations that AnLGE2 inhibits the actions of PGE2 by acting at the PGE2 receptor. Thus, AnLGE2 appears to be a specific inhibitor of PGE2 actions at its uterine receptors.  相似文献   

4.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

5.
Prostaglandin E (PGE) receptors in canine small intestinal mucosal and muscle membrane preparations were labeled with [3H] PGE1. Saturable, high affinity binding of [3H] PGE1 was observed in both preparations. The density of binding sites (fmol/mg protein) was 39 for mucosal membranes and 60 for muscle membranes, with corresponding dissociation constants of 10.6 nM and 5.8 nM, respectively. [3H] PGE1 binding sites in both preparations showed stereospecificity and high affinity for natural PGE1 and PGE2, but not for I or F-type PGs. Synthetic PGEs such as misoprostol and enisoprost had lower affinity than PGE1 or PGE2. Several analogs of enisoprost bound weakly to the binding sites. A highly significant correlation (C.C. = 0.9) was demonstrated between mucosal and muscle binding potency for a series of enisoprost analogs. There was also a significant positive correlation between the receptor binding potency and rat diarrheagenic activity for these analogs. These results indicate that PGE receptors in canine intestinal mucosa and muscle can be directly studied with [3H] PGE1 binding. The mucosal and muscle PGE receptors may have similar ligand binding specificity. We speculate that these receptors are likely to be associated with the diarrheagenic activity of PGEs.  相似文献   

6.
A preparation of cardiac sarcolemmal membranes is described. These membranes exhibit 9-24-fold purification of (Na+ + K+)-ATPase, potassium-stimulated nitrophenolphosphatase, 5'-nucleotidase, adenylate cyclase, sialic acid content, and beta-receptor number. Sarcolemmal membranes have two classes of binding sites for the calcium entry blocker, bepridil, 70 X 10(12) high-affinity sites/mg, Kd 25-40 nM; and 30 X 10(15) low-affinity sites/mg, Kd 54-70 microM. Binding of bepridil to these sites appears responsible for inhibition of isoprenaline-stimulated and activation of fluoride-stimulated adenylate cyclase. Since basal adenylate cyclase activity is not influenced, bepridil must act not at the catalytic site, but by altering the interactions between beta-receptor and catalytic and regulatory components of adenylate cyclase.  相似文献   

7.
Specific cell surface receptors for plasminogen (Pg) are expressed by a wide variety of cell types and serve to promote fibrinolysis and local Pg proteolysis. Pg types 1 and 2, separated by chromatography on concanavalin A-Sepharose, were utilized to determine their binding to the monocytoid U937 cell line. Both forms bind in a dose-dependent manner. However, Pg 2 binds to the cellular receptor considerably better than Pg 1 and at equilibrium demonstrates approximately 10-fold greater binding. Lipoprotein a [Lp(a)], which possesses a subunit showing considerable homology to Pg, competes with Pg 2 for the Pg receptor in U937 cells. Moreover, Pg 1 is not able to displace Pg 2 from the receptor. These studies suggest that high levels of Lp(a) may alter the profibrinolytic activity at the cell surface and increase the risks of atherosclerosis and thrombosis. This hypothesis is in accord with the 2-5-fold increased risk of atherosclerosis in patients having high levels of Lp(a).  相似文献   

8.
C A Nelson  K B Seamon 《FEBS letters》1985,183(2):349-352
Displaceable binding of [3H]forskolin to human platelet membranes can be detected in the presence of magnesium. There is an increase in the number of [3H]forskolin binding sites when membranes are incubated with GppNHp or NaF in the presence of magnesium. Prostaglandin E1, which stimulates human platelet adenylate cyclase, does not affect the binding of [3H]forskolin in the absence of GppNHp. However, the dose-response curve for the GppNHp-dependent increase in [3H]forskolin binding sites is shifted to lower concentrations in the presence of prostaglandin E1. Prostaglandin E1 potentiates the effect of GppNHp on [3H]forskolin binding most likely by facilitating the binding of the guanine nucleotide at the stimulatory quanine nucleotide regulatory protein of adenylate cyclase.  相似文献   

9.
Tritiated prostaglandin F2 alpha ([3H]PGF2 alpha) binding to bovine corpora luteal membranes has been reexamined from the viewpoint of eventual PGF2 alpha receptor purification. Several modifications of the literature on PGF2 alpha binding allow for a more stabilized [3H]PGF2 alpha PGF2 alpha receptor complex which should then facilitate the PGF2 alpha receptor purification. Of particular importance were: identification of protease inhibitors which protect [3H]PGF2 alpha binding and protease inhibitors which are detrimental to subsequent [3H]PGF2 alpha binding; the finding that EGTA treatment of tissue homogenates greatly protects subsequent [3H]PGF2 alpha binding; the observation that Mn(+)+ substitutes for Ca(+)+ and, in fact, among the divalent cations Mn(+)+ greater than Mg(+)+ greater than Ca(+)+ in facilitating [3H]PGF2 alpha binding where as Cd(+)+, Cu(+)+ and Zn(+)+ either have no effect or are detrimental to this binding; the lack of effect of ATP, GTP, GDP and cAMP or of kinase and phosphatase inhibitors and activators to alter binding of [3H]PGF2 alpha to isolated membranes; and the ease with which the [3H]PGF2 alpha-PGF2 alpha receptor complex can be removed from the membrane in spite of the receptor being an integral membrane protein. A new simple technique for separating protein bound [3H]PGF2 alpha (PGF2 alpha receptor-[3H]PGF2 alpha complexes) from free [3H]PGF2 alpha by use of hydroxyapatite (HAP) is introduced. This HAP method is of particular use in solubilized membrane preparations (but can also be used during PG radioimmunoassays to separate free PG from antibody bound PG). These changes were required to facilitate subsequent chromatographic steps leading to identification and purification of the PGF2 alpha receptor. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The topology of association of the monotopic protein cyclooxygenase-2 (COX-2) with membranes has been examined using EPR spectroscopy of spin-labeled recombinant human COX-2. Twenty-four mutants, each containing a single free cysteine substituted for an amino acid in the COX-2 membrane binding domain were expressed using the baculovirus system and purified, then conjugated with a nitroxide spin label and reconstituted into liposomes. Determining the relative accessibility of the nitroxide-tagged amino acid side chains for the solubilized COX-2 mutants, or COX-2 reconstituted into liposomes to nonpolar (oxygen) and polar (NiEDDA or CrOx) paramagnetic reagents allowed us to map the topology of COX-2 interaction with the lipid bilayer. When spin-labeled COX-2 was reconstituted into liposomes, EPR power saturation curves showed that side chains for all but two of the 24 mutants tested had limited accessibility to both polar and nonpolar paramagnetic relaxation agents, indicating that COX-2 associates primarily with the interfacial membrane region near the glycerol backbone and phospholipid head groups. Two amino acids, Phe(66) and Leu(67), were readily accessible to the non-polar relaxation agent oxygen, and thus likely inserted into the hydrophobic core of the lipid bilayer. However these residues are co-linear with amino acids in the interfacial region, so their extension into the hydrophobic core must be relatively shallow. EPR and structural data suggest that membrane interaction of COX-2 is also aided by partitioning of 4 aromatic amino acids, Phe(59), Phe(66), Tyr(76), and Phe(84) to the interfacial region, and by the electrostatic interactions of two basic amino acids, Arg(62) and Lys(64), with the phospholipid head groups.  相似文献   

11.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

12.
13.
A functional cDNA clone for mouse EP3 subtype of prostaglandin (PG) E receptor was isolated from a mouse cDNA library using polymerase chain reaction based on the sequence of the human thromboxane A2 receptor and cross-hybridization screening. The mouse EP3 receptor consists of 365 amino acid residues with putative seven-transmembrane domains. The sequence revealed significant homology to the human thromboxane A2 receptor. Ligand binding studies using membranes of COS cells transfected with the cDNA revealed specific [3H]PGE2 binding. The binding was displaced with unlabeled PGs in the order of PGE2 = PGE1 greater than iloprost greater than PGF2 alpha greater than PGD2. The EP3-selective agonists, M&B 28,767 or GR 63799X, potently competed for the [3H]PGE2 binding, but no competition was found with EP1- or EP2-selective ligands. PGE2 and M&B 28,767 decreased forskolin-induced cAMP formation in a concentration-dependent manner in Chinese hamster ovary cells permanently expressing the cDNA. Northern blot analysis demonstrated that the EP3 mRNA is expressed abundantly in kidney, uterus, and mastocytoma P-815 cells and in a lesser amount in brain, thymus, lung, heart, stomach, and spleen.  相似文献   

14.
Studies using prostaglandin E receptor (EP) agonists indicate that prostaglandin (PG) E(2) can have anabolic effects through both EP4 and EP2 receptors. We previously found that the anabolic response to a selective EP4 receptor agonist (EP4A, Ono Pharmaceutical) was substantially greater than to a selective EP2 receptor agonist (EP2A) in cultured murine calvarial osteoblastic cells. To further define the role of the EP2 receptor in PG-mediated effects on bone cells, we examined the effects of EP2A and PGE(2) on both calvarial primary osteoblasts (POB) and marrow stromal cells (MSC) cultured from mice with deletion of one (Het) or both (KO) alleles of the EP2 receptor compared to their wild-type (WT) littermates. Deletion of EP2 receptor was confirmed by quantitative real-time PCR, Western blot and immunohistochemistry. The 1 month-old mice used to provide cells in these studies did not show any significant differences in their femurs by static histomorphometry. EP2A was found to enhance osteoblastic differentiation as measured by alkaline phosphatase mRNA expression and activity as well as osteocalcin mRNA expression and mineralization in the WT cell cultures from both marrow and calvariae. The effects were somewhat diminished in cultures from Het mice and abrogated in cultures from KO mice. PGE(2) effects were greater than those of EP2A, particularly in POB cultures and were only moderately diminished in Het and KO cell cultures. We conclude that activation of the EP2 receptor is able to enhance differentiation of osteoblasts, that EP2A is a true selective agonist for this receptor and that PGE(2) has an additional anabolic effect likely mediated by the EP4 receptor.  相似文献   

15.
16.
17.
18.
The radiolabeled thromboxane A2/prostaglandin H2 (TXA2/PGH2) agonist 125I-BOP bound to the TXA2/PGH2 receptor on human platelet membranes. Scatchard analysis showed that pretreatment of platelet membranes with the reducing agent dithiothreitol (DTT) (10 mM) for 10 min decreased maximal 125I-BOP binding (Bmax) from 1.51 +/- 0.11 pmol/mg to 0.51 +/- 0.05 pmol/mg (p = 0.001) and increased the affinity of the remaining binding sites (Kd = 647 +/- 64 pM (untreated), 363 +/- 46 pM (treated), p = 0.006). Prolonged incubation of membranes with DTT (10 mM) for 40 min further reduced the Bmax to 0.23 +/- 0.08 pmol/mg (p = 0.001 from untreated), and the binding affinity remained elevated (Kd = 334 +/- 117 pM, p = 0.035 from untreated). Kinetic analysis of 125I-BOP binding indicated that the apparent increase in binding affinity after DTT treatment was due exclusively to an increase in the rate of ligand-receptor association with no change in dissociation rate. The effects of DTT on 125I-BOP binding were dose-dependent with an EC50 of 8.1 +/- 0.2 mM. DTT inactivation of TXA2/PGH2 receptors was time-dependent with a second order rate constant (k2) of 0.123 M-1 s-1 at 20 degrees C. The platelet membrane 125I-BOP binding site was partially protected from DTT inactivation by prior occupation with the ligand. TXA2/PGH2 receptor protection by I-BOP was dose-dependent and linearly related (r = 0.97, p = 0.002) to the proportion of receptors occupied, but was incomplete since agonist occupation of 89% of the total number of receptors resulted in only a 38% protective effect. Inhibition of 125I-BOP binding after reduction with DTT could be made permanent by addition of the sulfhydryl alkylating agent N-ethylmaleimide (25 mM), but was completely reversed by reoxidation with dithionitrobenzoic acid (DTNB) (5 mM). Oxidation of untreated receptors with DTNB resulted in a 64% increase in 125I-BOP binding sites from 1.65 +/- 0.12 pmol/mg to 2.70 +/- 0.08 pmol/mg (p = 0.013) without affecting binding affinity. DTNB-induced increases in 125I-BOP binding were concentration-dependent with an EC50 of 668 +/- 106 microM and occurred in less than 1 min at 37 degrees C. In the absence of DTT, alkylation of free sulfhydryl groups with N-ethylmaleimide reduced 125I-BOP Bmax in platelet membranes to 0.85 +/- 0.08 pmol/mg (p = 0.003), but did not change the affinity of the remaining receptors. The EC50 for N-ethylmaleimide inactivation of TXA2/PGH2 receptors was 139 +/- 8 mM, and the k2 in time course experiments was 0.067 M-1 s-1 at 20 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The elimination of [3H]prostaglandin E1 in anaesthetized rats was studied by continuous intravenous or intraarterial infusions, producing steady-state concentrations at the level of endogenous prostaglandin E2 in mixed venous blood. Blood samples (0.5 ml) were collected from the carotid artery or the right atrium, respectively. The levels of [3H]prostaglandin E1 were measured at different infusion time intervals and the 3H-labeled hydrophobic metabolites characterized. Cardiac output was estimated by a modification of the dye injection method, using 125I-labelled albumin as the marker. From the cardiac output and the rate of infusion, the fractional clearance of the lung and the systemic beds in the steady-state situation were estimated to 88.3 +/- 3.2% and 54.1 +/- 15.2% (mean +/- S.D.), RESPECTIVELY. The hydrophobic metabolites were characterized chromatographically on Sephadez LH-20 columns, using synthetically prepared [14C]prostaglandin metabolites as internal standards and markers. The identities of some metabolites were further established by derivative formation to a constant [3H]/[14C] ratio. The major metabolite was 15-keto-13,14-dihydro-[3H]prostaglandin E1, while 15-keto-[3H]prostaglandin E1 and 13,14-dihydro-[3H]prostaglandin E1 could not be demonstrated.  相似文献   

20.
Myocardial ischemia-reperfusion activates the Na(+)/H(+) exchanger, which induces arrhythmias, cell damage, and eventually cell death. Inhibition of the exchanger reduces cell damage and lowers the incidence of arrhythmias after ischemia-reperfusion. The omega-3 polyunsaturated fatty acids (PUFAs) are also known to be cardioprotective and antiarrhythmic during ischemia-reperfusion challenge. Some of the action of PUFAs may occur via inhibition of the Na(+)/H(+) exchanger. The purpose of our study was to determine the capacity for selected PUFAs to alter cardiac sarcolemmal (SL) Na(+)/H(+) exchange. Cardiac membranes highly enriched in SL vesicles were exposed to 10-100 microM eicosapentanoic acid (EPA) or docosahexanoic acid (DHA). H(+)-dependent (22)Na(+) uptake was inhibited by 30-50% after treatment with > or =50 microM EPA or > or =25 microM DHA. This was a specific effect of these PUFAs, because 50 microM linoleic acid or linolenic acid had no significant effect on Na(+)/H(+) exchange. The SL vesicles did not exhibit an increase in passive Na(+) efflux after PUFA treatment. In conclusion, EPA and DHA can potently inhibit cardiac SL Na(+)/H(+) exchange at physiologically relevant concentrations. This may explain, in part, their known cardioprotective effects and antiarrhythmic actions during ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号