首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Complete transformation by adenovirus 2 requires both E1A proteins   总被引:45,自引:0,他引:45  
C Montell  G Courtois  C Eng  A Berk 《Cell》1984,36(4):951-961
  相似文献   

2.
The 289-residue (289R) and 243R early region 1A (E1A) proteins of human adenovirus type 5 induce cell transformation in cooperation with either E1B or activated ras. Here we report that Ser-132 in both E1A products is a site of phosphorylation in vivo and is the only site phosphorylated in vitro by purified casein kinase II. Ser-132 is located in conserved region 2 near the primary binding site for the pRB tumor suppressor and, in 289R, just upstream of the conserved region 3 transactivation domain involved in regulation of early viral gene expression. Mutants containing alanine or glycine in place of Ser-132 interacted with pRB-related proteins at somewhat reduced efficiency; however, all Ser-132 mutants transformed primary rat cells in cooperation with E1B as well as or better than the wild type when both major E1A proteins were expressed. Such was not the case with mutants expressing only 289R. In cooperation with E1B, the Asp-132 and Gly-132 mutants yielded reduced numbers of smaller transformed foci. With activated ras, all Ser-132 mutants were significantly defective for transformation and the rare foci produced were small and contained extensive areas populated by low densities of flat cells. In the absence of E1B, all Ser-132 mutants induced p53-independent cell death more readily than virus expressing wild-type 289R. These results suggested that phosphorylation at Ser-132 may enhance the binding of pRB and related proteins and also reduce the toxicity of E1A 289R, thus increasing transforming activity.  相似文献   

3.
The shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is characteristic of the adenovirus E1A proteins is the result of posttranslational modification. In the present study, we demonstrate that phosphorylation of bacterially produced E1A in higher cell extracts occurs on serine and is responsible for the mobility shift. E1A protein expressed in Saccharomyces cerevisiae also undergoes the mobility shift due to serine phosphorylation. Site-directed mutagenesis was used to identify the serine residue responsible for the mobility shift. Six serine residues were altered to glycine within E1A. Substitution at serine residue 89 was shown to selectively prevent the mobility shift of both the 289R and 243R E1A proteins. We conclude that phosphorylation at serine 89 is the specific modification responsible for the mobility shift of E1A. Moreover, we demonstrate that the Ser-89-to-Gly mutation has no effect on trans activation or complementation of an E1A-deficient adenovirus. In contrast, the mutant protein does significantly reduce both the repression and transformation efficiency of E1A. The five other Ser-to-Gly mutation were also examined for functional effects. None affected trans activation, whereas repression and transformation functions were affected. One mutant affected transformation without affecting repression, suggesting that these functions are to some degree also separable. The relevance of phosphorylation to structure and activity of E1A and other nuclear oncogene proteins is discussed.  相似文献   

4.
J W Lillie  M Green  M R Green 《Cell》1986,46(7):1043-1051
  相似文献   

5.
We have studied the initial effects of adenovirus E1A expression on the retinoblastoma (RB) gene product in normal quiescent cells. Although binding of the E1A products to pRB could, in theory, make pRB phosphorylation unnecessary for cell cycle progression, we have found that the 12S wild-type E1A product is capable of inducing phosphorylation of pRB in normal quiescent cells. The induction of pRB phosphorylation correlates with E1A-mediated induction of p34cdc2 expression and kinase activity, consistent with the possibility that p34cdc2 is a pRB kinase. Expression of simian virus 40 T antigen induces similar effects. Induction of pRB phosphorylation is independent of the pRB binding activity of the E1A products; E1A domain 2 mutants do not bind detectable levels of pRB but remain competent to induce pRB phosphorylation and to activate cdc2 protein kinase expression and activity. Although the kinetics of induction are slower, domain 2 mutants induce wild-type levels of pRB phosphorylation and host cell DNA synthesis and yet fail to induce cell proliferation. These results imply that direct physical interaction between the RB and E1A products does not play a required role in the early stages of E1A-mediated cell cycle induction and that pRB phosphorylation is not, of itself, sufficient to allow quiescent cells to divide. These results suggest that the E1A products do not need to bind pRB in order to stimulate resting cells to enter the cell cycle. Indeed, a more important role of the RB binding activity of the E1A products may be to prevent dividing cells from returning to G0.  相似文献   

6.
In the absence of E1B, the 289- and 243-residue E1A products of human adenovirus type 5 induce p53-dependent apoptosis. However, our group has shown recently that the 289-residue E1A protein is also able to induce apoptosis by a p53-independent mechanism (J. G. Teodoro, G. C. Shore, and P. E. Branton, Oncogene 11:467-474, 1995). Preliminary results suggested that p53-independent cell death required expression of one or more additional adenovirus early gene products. Here we show that both the E1B 19-kDa protein and cellular Bcl-2 inhibit or significantly delay p53-independent apoptosis. Neither early region E2 or E3 appeared to be necessary for such cell death. Analysis of a series of E1A mutants indicated that mutations in the transactivation domain and other regions of E1A correlated with E1A-mediated transactivation of E4 gene expression. Furthermore, p53-deficient human SAOS-2 cells infected with a mutant which expresses E1B but none of the E4 gene products remained viable for considerably longer times than those infected with wild-type adenovirus type 5. In addition, an adenovirus vector lacking both E1 and E4 was unable to induce DNA degradation and cell killing in E1A-expressing cell lines. These data showed that an E4 product is essential for E1A-induced p53-independent apoptosis.  相似文献   

7.
8.
9.
Human adenovirus has evolved to infect and replicate in terminally differentiated human epithelial cells, predominantly those within the airway, the gut, or the eye. To overcome the block to viral DNA replication present in these cells, the virus expresses the Early 1A proteins (E1A). These immediate early proteins drive cells into S-phase and induce expression of all other viral early genes. During infection, several E1A isoforms are expressed with proteins of 289, 243, 217, 171, and 55 residues being present for human adenovirus type 5. Here we examine the contribution that the two largest E1A isoforms make to the viral life cycle in growth-arrested normal human fibroblasts. Viruses that express E1A289R were found to replicate better than those that do not express this isoform. Importantly, induction of several viral genes was delayed in a virus expressing E1A243R, with several viral structural proteins undetectable by western blot. We also highlight the changes in E1A isoforms detected during the course of viral infection. Furthermore, we show that viral DNA replication occurs more efficiently, leading to higher number of viral genomes in cells infected with viruses that express E1A289R. Finally, induction of S-phase specific genes differs between viruses expressing different E1A isoforms, with those having E1A289R leading to, generally, earlier activation of these genes. Overall, we provide an overview of adenovirus replication using modern molecular biology approaches and further insights into the contribution that E1A isoforms make to the life cycle of human adenovirus in arrested human fibroblasts.  相似文献   

10.
11.
12.
13.
14.
15.
The localization in infected and transformed cells of the two major adenovirus type 2 E1a proteins, of 289 and 243 amino acid residues, was studied with antisera raised against synthetic peptides or a TrpE-E1a fusion protein. Both E1a proteins were detected only in the nucleus of infected cells as determined by immunofluorescence analysis of cells infected with wild-type virus or with the mutants pm975 or dl1500, which produce, respectively, only the 289-residue or only the 243-residue E1a protein. However, the 289-residue protein was more tightly associated with the nucleus than was the 243-residue protein, as determined by the stability of nuclear fluorescence to different fixation procedures and by the use of radioimmunoprecipitation and Western blot analysis to analyze fractions extracted from the nucleus by detergent and other treatments. The latter experiments revealed that only the 289-residue protein, and only a fraction of that protein present in the nucleus, is associated with the nuclear matrix, both in infected HeLa cells and in the transformed human cell line 293.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号