首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The genome is thought to be divided into domains by DNA elements which mediate anchorage of chromosomal DNA to the nuclear matrix or chromosome scaffold. The positions of nuclear matrix anchorage regions (MARs) have been mapped within the 200 kb mouse immunoglobulin heavy chain constant region locus, thereby allowing an estimate of the size of DNA domains within a segment of the genome. MARs were identified in four regions, which appear to divide the locus into looped DNA domains of 30, 20, 30 and greater than 70 kb in length. These DNA domain sizes fall within the range of DNA loop sizes observed in histone-extracted nuclei and chromosomes. In two regions, large clusters of MARs were identified, and many of these MARs lie on DNA fragments that include repetitive DNA elements, perhaps indicating that repetitive DNA integrates into the genome close to MARs, or that some classes of repeats could themselves act as MARs.  相似文献   

3.
Forum domains are 50-150 kb DNA fragments that are released during spontaneous fragmentation of chromosomes. They are separated by islands of putative heterochromatin boundary regions. The SuUR protein, which is involved in the control of chromosome organization, is localized exclusively in heterochromatin and often colocalizes on chromosomes with Polycomb group proteins. To test whether the SuUR protein is associated with boundary regions, we used gel retardation assays and found that the SuUR protein binds specifically to boundary regions and that boundary regions are under-replicated. These results suggest that the regular distribution of boundary regions in chromosomes may represent the dispersion of sites designed for chromosomal silencing.  相似文献   

4.
5.
In Drosophila polytene chromosomes, regions of intercalary heterochromatin are scattered throughout the euchromatic arms. Here, we present data on the first fine analysis of the individual intercalary heterochromatin region, 75C1-2, located in the 3L chromosome. By using electron microscopy, we demonstrated that this region appears as three closely adjacent condensed bands. Mapping of the region on the physical map by means of the chromosomal rearrangements with known breakpoints showed that the length of the region is about 445 kb. Although it seems that the SUUR protein binds to the whole 75C1-2 region, the proximal part of the region is fully polytenized, so the DNA underreplication zone is asymmetric and located in the distal half of the region. Finally, we speculate that intercalary heterochromatin regions of Drosophila polytene chromosomes are organized into three different types with respect to the localization of the underreplication zone.  相似文献   

6.
Mammalian chromosomes consist of multiple replicons; however, in contrast to yeast, the details of this replication process (origin firing, fork progression and termination) relative to specific chromosomal domains remain unclear. Using direct visualization of DNA fibers, here we show that the rate of replication fork movement typically decreases in the early-mid S phase when the replication fork proceeds through the R/G chromosomal band boundary and pericentromeric heterochromatin. To support this, fluorescence in situ hybridization (FISH)-based replication profiles at the human 1q31.1 (R-band)-32.1 (G-band) regions revealed that replication timing switched around at the putative R/G chromosomal band boundary predicted by marked changes in GC content at the sequence level. Thus, the slowdown of replication fork movement is thought to be the general property of the band boundaries separating the functionally different chromosomal domains. By simultaneous visualization of replication fork movement and pericentromeric heterochromatin sequences on DNA fibers, we observed that this region is duplicated by many replication forks, some of which proceed unidirectionally, that originate from clustered replication origins. We showed that histone hyperacetylation is tightly associated with changes in the replication timing of pericentromeric heterochromatin induced by 5-aza-2'-deoxycytidine treatment. These results suggest that, similar to the yeast system, histone modification is involved in controlling the timing of origin firing in mammals.  相似文献   

7.
The Drosophila protein HP1 is a 206 amino acid heterochromatin- associated nonhistone chromosomal protein. Based on the characterization of HP1 to date, there are three properties intrinsic to HP1: nuclear localization, heterochromatin binding, and gene silencing. In this work, we have concentrated on the identification of domains responsible for the nuclear localization and heterochromatin binding properties of HP1. We have expressed a series of beta- galactosidase/HP1 fusion proteins in Drosophila embryos and polytene tissue and have used beta-galactosidase enzymatic activity to identify the subcellular localization of each fusion protein. We have identified two functional domains in HP1: a nuclear localization domain of amino acids 152-206 and a heterochromatin binding domain of amino acids 95- 206. Both of these functional domains overlap an evolutionarily conserved COOH-terminal region.  相似文献   

8.
R H Devlin  D G Holm  K R Morin  B M Honda 《Génome》1990,33(3):405-415
Although little is known about the molecular organization of most genes within heterochromatin, the unusual properties of these chromosomal regions suggest that genes therein may be organized and expressed very differently from those in euchromatin. We report here the cloning, by P transposon tagging, of sequences associated with the expression of the light locus, an essential gene found in the heterochromatin of chromosome 2 of Drosophila melanogaster. We conclude that this DNA is either a segment of the light locus, or a closely linked, heterochromatic sequence affecting its expression. While other functional DNA sequences previously described in heterochromatin have been repetitive, light gene function may be associated, at least in part, with single-copy DNA. This conclusion is based upon analysis of DNA from mutations and reversions induced by P transposable elements. The cloned region is unusual in that this single-copy DNA is embedded within middle-repetitive sequences. The in situ hybridization experiments also show that, unlike most other sequences in heterochromatin, this light-associated DNA evidently replicates in polytene chromosomes, but its diffuse hybridization signal may suggest an unusual chromosomal organization.  相似文献   

9.
Ma MK  Heath C  Hair A  West AG 《PLoS genetics》2011,7(7):e1002175
Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3' boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5' boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading.  相似文献   

10.
We have completed a long-range restriction map of the terminal region of the short arm of human chromosome 16 (16p13.3) by physically linking a distal genetic locus (alpha-globin) with two recently isolated probes to telomere-associated repeats (TelBam3.4 and TelBam-11). Comparison of 47 chromosomes has revealed major polymorphic length variation in this region: we have identified three alleles in which the alpha-globin genes lie 170 kb, 350 kb, or 430 kb from the telemere. The two most common alleles contain different terminal segments, starting 145 kb distal to the alpha-globin genes. Beyond this boundary these alleles are nonhomologous, yet each contains sequences related to other (different) chromosome termini. This chromosome size polymorphism has probably arisen by occasional exchanges between the subtelomeric regions of nonhomologous chromosomes; analogous length variation is likely to be present at other human telomeres.  相似文献   

11.
Cuvier O  Hart CM  Käs E  Laemmli UK 《Chromosoma》2002,110(8):519-531
The insulating properties required to delimit higher-order chromosomal domains have been shown to be shared by a variety of chromatin boundary elements (BEs). Boundary elements have been described in several species, from yeast to human, and we have previously reported the existence of a class of chromatin BEs in Drosophila melanogaster whose insulating activity requires the DNA-binding protein BEAF (boundary element-associated factor). Here we focus on the characterization of a moderately repeated 1.2 kb DNA sequence that encompasses boundary element 28 (BE28). We show that it directionally blocks enhancer/promoter communication in transgenic flies. This sequence contains a BEAF-binding sequence juxtaposed to an AT-rich sequence that harbors a strong nuclease-hypersensitive site. Using a combination of DNA-protein and protein blotting techniques, we found that this region is recognized by the A+T-binding D1 non-histone chromosomal protein of D. melanogaster, and we provide evidence that D1 and BEAF physically interact. In addition, the multicopy BE28 element maps to pericentric regions of the D. melanogaster 2L, 2R and X chromosome arms to which D1 has been shown to localize. In yeast, BEs that mark the periphery of silenced chromosomal domains have recently been shown to block the spreading of heterochromatin assembly. We propose that the BE28 repeat clusters could fulfill a similar function, acting as a local boundary between hetero- and euchromatin in a process involving interactions between the BEAF and D1 proteins.  相似文献   

12.
E. L. Cabot  P. Doshi  M. L. Wu    C. I. Wu 《Genetics》1993,135(2):477-487
The Responder (Rsp) locus in Drosophila melanogaster is the target locus of segregation distortion and is known to be comprised of a tandem array of 120-bp repetitive sequences. In this study, we first determined the large scale molecular structure of the Rsp locus, which extends over a region of 600 kb on the standard sensitive (cn bw) chromosome. Within the region, small Rsp repeat arrays are interspersed with non-Rsp sequences and account for 10-20% of the total sequences. We isolated and sequenced 32 Rsp clones from three different chromosomes. The main results are: (1) Rsp repeats isolated from the same chromosome are not more similar than those from different chromosomes. This implies either that there are more homologous exchanges at the Rsp locus than expected or, alternatively, that the second chromosomes of D. melanogaster have diverged from one another more recently at the centromeric heterochromatin than at the nearby euchromatin. (2) The repeats usually have a dimeric structure with an average difference of 16% between the left and right halves. The differences allow us to easily identify the products of unequal exchanges. Despite the large differences between the two halves, exchanges have occurred frequently and the majority of them fall within a 29-bp interval of identity between the two halves. Our data thus support the suggestion that recombination depends on short stretches of complete identity rather than long stretches of general homology. (3) Frequent unequal crossover events obscure the phylogenetic relationships between repeats; therefore, different parts of any single repeat could often have different phylogenetic histories. The high rate of unequal crossing over may also help explain the evolutionary dynamics of the Rsp locus.  相似文献   

13.
Post-translational histone modifications regulate epigenetic switching between different chromatin states. Distinct histone modifications, such as acetylation, methylation and phosphorylation, define different functional chromatin domains, and often do so in a combinatorial fashion. The centromere is a unique chromosomal locus that mediates multiple segregation functions, including kinetochore formation, spindle-mediated movements, sister cohesion and a mitotic checkpoint. Centromeric (CEN) chromatin is embedded in heterochromatin and contains blocks of histone H3 nucleosomes interspersed with blocks of CENP-A nucleosomes, the histone H3 variant that provides a structural and functional foundation for the kinetochore. Here, we demonstrate that the spectrum of histone modifications present in human and Drosophila melanogaster CEN chromatin is distinct from that of both euchromatin and flanking heterochromatin. We speculate that this distinct modification pattern contributes to the unique domain organization and three-dimensional structure of centromeric regions, and/or to the epigenetic information that determines centromere identity.  相似文献   

14.
15.
Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.  相似文献   

16.
17.
We identified a novel nucleoplasm localized protein in Arabidopsis called AT-hook motif nuclear localized protein 1 (AHL1), which was isolated by visual screening of transformants using random GFP::cDNA fusions. AHL1 contains an AT-hook motif and unknown conserved PPC (plants and prokaryotes conserved) domain that includes a hydrophobic region. Approximately 30 paralogues were identified in the Arabidopsis genome. Proteins with PPC-like domains are found in Bacteria, Archaea and the plant kingdom, but in Bacteria and Archaea the PPC containing proteins of do not have an AT-hook motif. Thus, the PPC domain is evolutionary conserved and has a new function such as AT-rich DNA binding. AHL1 was mainly localized in the nucleoplasm, but little in the nucleolus and heterochromatic region, and was concentrated in the boundary region between euchromatin and heterochromatin. Biochemically, AHL1 was also found in the nuclear matrix fraction. In the M phase, AHL1 was localized on the chromosomal surface. The AT-hook motif was essential for matrix attachment region (MAR) binding, and the hydrophobic region of the PPC was indispensable for nuclear localization. Our results suggest that AHL1 is a novel plant MAR binding protein, which is related to the positioning of chromatin fibers in the nucleus by the presence of an AT-hook motif and PPC domain. In addition, AHL1 is located on the surface of chromosomes during mitosis.  相似文献   

18.
19.
We have investigated the large-scale organization of the human chAB4-related long-range multisequence family, a low copy-number repetitive DNA located in the pericentromeric heterochromatin of several human chromosomes. Analysis of genomic clones revealed large-scale (~100 kb or more) sequence conservation in the region flanking the prototype chAB4 element. We demonstrated that this low copy-number family is connected to another long-range repeat, the NF1-related (ΨNF1) multisequence. The two DNA types are joined by an ~2 kb-long tandem repeat of a 48-bp satellite. Although the chAB4- and NF1-like sequences were known to have essentially the same chromosomal localization, their close association is reported here for the first time. It indicates that they are not two independent long-range DNA families, but are parts of a single element spanning ~200 kb or more. This view is consistent both with their similar chromosomal localizations and the high levels of sequence conservation among copies found on different chromosomes. We suggest that the master copy of the linked chAB4–ΨNF1 DNA segment appeared first on the ancestor of human chromosome 17.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号