首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra alpha-helix from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper.  相似文献   

2.
The multicopper oxidase CueO oxidizes toxic Cu(I) and is required for copper homeostasis in Escherichia coli. Like many proteins involved in copper homeostasis, CueO has a methionine-rich segment that is thought to be critical for copper handling. How such segments function is poorly understood. Here, we report the crystal structure of CueO at 1.1 Å with the 45-residue methionine-rich segment fully resolved, revealing an N-terminal helical segment with methionine residues juxtaposed for Cu(I) ligation and a C-terminal highly mobile segment rich in methionine and histidine residues. We also report structures of CueO with a C500S mutation, which leads to loss of the T1 copper, and CueO with six methionines changed to serine. Soaking C500S CueO crystals with Cu(I), or wild-type CueO crystals with Ag(I), leads to occupancy of three sites, the previously identified substrate-binding site and two new sites along the methionine-rich helix, involving methionines 358, 362, 368, and 376. Mutation of these residues leads to a ∼4-fold reduction in kcat for Cu(I) oxidation. Ag(I), which often appears with copper in nature, strongly inhibits CueO oxidase activities in vitro and compromises copper tolerance in vivo, particularly in the absence of the complementary copper efflux cus system. Together, these studies demonstrate a role for the methionine-rich insert of CueO in the binding and oxidation of Cu(I) and highlight the interplay among cue and cus systems in copper and silver homeostasis.  相似文献   

3.
CueO is a multicopper oxidase involved in a copper efflux system of Escherichia coli and has high cuprous oxidase activity but little or no oxidizing activity toward various organic substances. However, its activity toward oxidization of organic substrates was found to be considerably increased by the removal of the methionine-rich helical segment that covers the substrate-binding site (Δα5-7 CueO) [Kataoka, K., et al. (2007) J. Mol. Biol. 373, 141]. In the study presented here, mutations at Pro444 to construct a second NH-S hydrogen bond between the backbone amide and coordinating Cys500 thiolate of the type I copper are shown to result in positive shifts in the redox potential of this copper center and enhanced oxidase activity in CueO. Analogous enhancement of the activity of Δα5-7 CueO has been identified only in the Pro444Gly mutant because Pro444 mutants limit the incorporation of copper ions into the trinuclear copper center. The activities of both CueO and Δα5-7 CueO were also enhanced by mutations to break down the hydrogen bond between the imidazole group of His443 that is coordinated to the type I copper and the β-carboxy group of Asp439 that is located in the outer sphere of the type I copper center. A synergetic effect of the positive shift in the redox potential of the type I copper center and the increase in enzyme activity has been achieved by the double mutation of Pro444 and Asp439 of CueO. Absorption, circular dichroism, and resonance Raman spectra indicate that the characteristics of the Cu(II)-S(Cys) bond were only minimally perturbed by mutations involving formation or disruption of a hydrogen bond from the coordinating groups to the type I copper. This study provides widely applicable strategies for tuning the activities of multicopper oxidases.  相似文献   

4.
The multicopper oxidase CueO had previously been demonstrated to exhibit phenoloxidase activity and was implicated in intrinsic copper resistance in Escherichia coli. Catecholates can potentially reduce Cu(II) to the prooxidant Cu(I). In this report we provide evidence that CueO protects E. coli cells by oxidizing enterobactin, the catechol iron siderophore of E. coli, in the presence of copper. In vitro, a mixture of enterobactin and copper was toxic for E. coli cells, but the addition of purified CueO led to their survival. Deletion of fur resulted in copper hypersensitivity that was alleviated by additional deletion of entC, preventing synthesis of enterobactin. In addition, copper added together with 2,3-dihydroxybenzoic acid or enterobactin was able to induce a Phi(cueO-lacZ) operon fusion more efficiently than copper alone. The reaction product of the 2,3-dihydroxybenzoic acid oxidation by CueO that can complex Cu(II) ions was determined by gas chromatography-mass spectroscopy and identified as 2-carboxymuconate.  相似文献   

5.
We have found CueO from Escherichia coli to have a robust cuprous oxidase activity, severalfold higher than any homologue. These data suggest that a functional role for CueO in protecting against copper toxicity in vivo includes the removal of Cu(I).  相似文献   

6.
CueO belongs to the family of multicopper oxidases which are characterized by the presence of multiple copper-binding sites with different structural and functional properties. These enzymes share the ability to couple the one-electron oxidation of substrate to reduction of oxygen to water by way of a functional unit composed of a mononuclear type 1 blue copper site, which is the entry site for electrons, and of a trinuclear copper cluster formed by type 2 and binuclear type 3 sites, where oxygen binding and reduction take place. The mechanism of copper incorporation in CueO has been investigated by optical and EPR spectroscopy. The results indicate unambiguously that the process is sequential, with type 1 copper being the first to be reconstituted, followed by type 2 and type 3 sites.  相似文献   

7.
The cutO gene of the photosynthetic purple bacterium Rhodobacter capsulatus codes for a multicopper oxidase as demonstrated by the ability of the recombinant Strep-tagged protein to oxidize several mono- and diphenolic compounds known as substrates of Escherichia coli CueO and multicopper oxidases from other organisms. The R. capsulatus cutO gene was shown to form part of a tri-cistronic operon, orf635-cutO-cutR. Expression of the cutO operon was repressed under low copper conditions by the product of the cutR gene. CutO conferred copper tolerance not only under aerobic conditions, as described for the well-characterized E. coli multicopper oxidase CueO, but also under anaerobic conditions.  相似文献   

8.
The interactions between the plasmid-borne copper resistance determinant, pco, and the main copper export system in Escherichia coli have been investigated and no direct interaction has been found. The PcoE and PcoC proteins are periplasmic and PcoC binds one Cu ion per protein molecule. PcoA is also periplasmic and can substitute for the chromosomally encoded CueO protein. The pco determinant is proposed to exert its effect through periplasmic handling of excess copper ions and to increase the level of resistance to copper ions above that conferred by copA alone.  相似文献   

9.
Escherichia coli mechanisms of copper homeostasis in a changing environment   总被引:7,自引:0,他引:7  
Escherichia coli is equipped with multiple systems to ensure safe copper handling under varying environmental conditions. The Cu(I)-translocating P-type ATPase CopA, the central component in copper homeostasis, is responsible for removing excess Cu(I) from the cytoplasm. The multi-copper oxidase CueO and the multi-component copper transport system CusCFBA appear to safeguard the periplasmic space from copper-induced toxicity. Some strains of E. coli can survive in copper-rich environments that would normally overwhelm the chromosomally encoded copper homeostatic systems. Such strains possess additional plasmid-encoded genes that confer copper resistance. The pco determinant encodes genes that detoxify copper in the periplasm, although the mechanism is still unknown. Genes involved in copper homeostasis are regulated by MerR-like activators responsive to cytoplasmic Cu(I) or two-component systems sensing periplasmic Cu(I). Pathways of copper uptake and intracellular copper handling are still not identified in E. coli.  相似文献   

10.
Recently, genes for two copper-responsive regulatory systems were identified in the Escherichia coli chromosome. In this report, data are presented that support a hypothesis that the putative multicopper oxidase CueO and the transenvelope transporter CusCFBA are involved in copper tolerance in E. coli.  相似文献   

11.
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal “twin arginine” signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.  相似文献   

12.
The Tat (twin-arginine translocation) system from Escherichia coli transports folded proteins with N-terminal twin-arginine signal peptides across the cytoplasmic membrane. The influence of general chaperones on Tat substrate targeting has not been clarified so far. Here we show that the chaperones SlyD and DnaK bind to a broad range of different Tat signal sequences in vitro and in vivo. Initially, SlyD and GroEL were purified from DnaK-deficient extracts by their affinity to various Tat signal sequences. Of these, only SlyD bound Tat signal sequences also in the presence of DnaK. SlyD and DnaK also co-purified with Tat substrate precursors, demonstrating the binding to Tat signal sequences in vivo. Deletion of dnaK completely abolished Tat-dependent translocation of CueO, but not of DmsA, YcdB, or HiPIP, indicating that DnaK has an essential role specifically for CueO. DnaK was not required for stability of the CueO precursor and thus served in some essential step after folding. A CueO signal sequence fusion to HiPIP was Tat-dependently transported without the need of DnaK, indicating that the mature domain of CueO is responsible for the DnaK dependence. The overall results suggest that SlyD and DnaK are in the set of chaperones that can serve as general Tat signal-binding proteins. DnaK has additional functions that are indispensable for the targeting of CueO.  相似文献   

13.
The periplasmic multicopper oxidase (CueO) is involved in copper homeostasis and protection against oxidative stress. Here, we show that the deletion of cueO in uropathogenic Escherichia coli increases its colonization of the urinary tract despite its increased sensitivity to hydrogen peroxide. The cueO deletion mutant accumulated iron with increased efficiency compared to its parent strain; this may account for its advantage in the iron-limited environment of the urinary tract.  相似文献   

14.
Laccases produced by white rot fungi are capable of rapidly oxidizing benzo[a]pyrene. We hypothesize that the polycyclic aromatic hydrocarbon (PAH)-degrading bacteria producing laccase can enhance the degree of benzo[a]pyrene mineralization. However, fungal laccases are glycoproteins which cannot be glycosylated in bacteria, and there is no evidence to show that bacterial laccases can oxidize benzo[a]pyrene. In this study, the in vitro oxidation of PAHs by crude preparations of the bacterial laccase, CueO, from Escherichia coli was investigated. The results revealed that the crude CueO catalyzed the oxidation of anthracene and benzo[a]pyrene in the same way as the fungal laccase from Trametes versicolor, but showed specific characteristics such as thermostability and copper dependence. In the presence of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), high amounts of anthracene and benzo[a]pyrene, 80% and 97%, respectively, were transformed under optimal conditions of 60°C, pH 5, and 5 mmol l(-1) CuCl(2) after a 24-h incubation period. Other PAHs including fluorene, acenaphthylene, phenanthrene, and benzo[a]anthracene were also oxidized by the crude CueO. These findings indicated the potential application of prokaryotic laccases in enhancing the mineralization of benzo[a]pyrene by PAH-degrading bacteria.  相似文献   

15.
A combination of techniques to separate and quantify the native proteins associated with a particular transition metal ion from a cellular system has been developed. The procedure involves four steps: (1) labeling of the target proteins with a suitable short-lived radioisotope (suitable isotopes are 64Cu, 67Cu, 187W, 99Mo, 69Zn, 56Mn, 65Ni); (2) separation of intact soluble holoproteins using native isoelectric focusing combined with blue native polyacrylamide gel electrophoresis into native–native 2D gel electrophoresis; (3) spot visualization and quantification using autoradiography; and (4) protein identification with tandem mass spectrometry. The method was applied to the identification of copper proteins from a soluble protein extract of wild-type Escherichia coli K12 using the radioisotope 64Cu. The E. coli protein CueO, which has previously been only identified as a multicopper oxidase following homologous overexpression, was now directly detected as a copper protein against a wild-type background at an expression level of 0.007% of total soluble protein. The retention of the radioisotope by the copper proteins throughout the separation process corroborates the method to be genuinely native. The procedure developed here can be applied to cells of any origin, and to any metal having suitable radioisotopes. The finding that the periplasmic protein CueO is the only major form of soluble protein bound copper in E. coli strengthens the view that the bacterial periplasm contains only a few periplasmic copper proteins, and that the cytosol is devoid of copper proteins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
CueO, a multicopper oxidase, is part of the copper-regulatory cue operon in Escherichia coli, is expressed under conditions of copper stress and shows enhanced oxidase activity when additional copper is present. The 1.7-A resolution structure of a crystal soaked in CuCl2 reveals a Cu(II) ion bound to the protein 7.5 A from the T1 copper site in a region rich in methionine residues. The trigonal bipyramidal coordination sphere is unusual, containing two methionine sulfur atoms, two aspartate carboxylate oxygen atoms, and a water molecule. Asp-439 both ligates the labile copper and hydrogen-bonds to His-443, which ligates the T1 copper. This arrangement may mediate electron transfer from substrates to the T1 copper. Mutation of residues bound to the labile copper results in loss of oxidase activity and of copper tolerance, confirming a regulatory role for this site. The methionine-rich portion of the protein, which is similar to that of other proteins involved in copper homeostasis, does not display additional copper binding. The type 3 copper atoms of the trinuclear cluster in the structure are bridged by a chloride ion that completes a square planar coordination sphere for the T2 copper atom but does not affect oxidase activity.  相似文献   

17.
CueO is a multicopper oxidase (MCO) that is involved in the homeostasis of Cu in Escherichia coli and is the sole cuprous oxidase to have ever been found. Differing from other MCOs, the substrate-binding site of CueO is deeply buried under a methionine-rich helical region including alpha-helices 5, 6, and 7 that interfere with the access of organic substrates. We deleted the region Pro357-His406 and replaced it with a Gly-Gly linker. The crystal structures of a truncated mutant in the presence and in the absence of excess Cu(II) indicated that the scaffold of the CueO molecule and metal-binding sites were reserved in comparison with those of CueO. In addition, the high thermostability of the protein molecule and its spectroscopic and magnetic properties due to four Cu centers were also conserved after truncation. As for functions, the cuprous oxidase activity of the mutant was reduced to ca 10% that of recombinant CueO owing to the decrease in the affinity of the labile Cu site for Cu(I) ions, although activities for laccase substrates such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), p-phenylenediamine, and 2,6-dimethoxyphenol increased due to changes in the access of these organic substrates to the type I Cu site. The present engineering of CueO indicates that the methionine-rich alpha-helices function as a barrier to the access of bulky organic substrates, which provides CueO with specificity as a cuprous oxidase.  相似文献   

18.
Copper is essential but can be toxic even at low concentrations. Coping with this duality requires multiple pathways to control intracellular copper availability. Three copper-inducible promoters, controlling expression of six copper tolerance genes, were recently identified in Escherichia coli. The cue system employs an inner membrane copper transporter, whereas the cus system includes a tripartite transporter spanning the entire cell envelope. Although cus is not essential for aerobic copper tolerance, we show here that a copper-sensitive phenotype can be observed when cus is inactivated in a cueR background. Furthermore, a clear copper-sensitive phenotype for the cus system is revealed in the absence of O(2). These results indicate that the cue pathway, which includes a copper exporter, CopA, and a periplasmic oxidase, CueO, is the primary aerobic system for copper tolerance. During anaerobic growth, however, copper toxicity increases, and the independent cus copper exporter is also necessary for full copper tolerance. We conclude that the cytosolic (CueR) and periplasmic (CusRS) sensor systems differentially regulate copper export systems in response to changes in copper and oxygen availability. These results underscore the increased toxicity of copper under anaerobic conditions and the complex adaptation of copper export in E. coli.  相似文献   

19.
2,6-Dimethoxyphenol is a versatile substrate for Pyricularia oryzae laccase, PpoA from Marinomonas mediterranea, phenoxazinone synthase from Streptomyces antibioticus and mammalian ceruloplasmin. In addition, in cellular extracts of microorganisms expressing other blue multicopper proteins with no enzymatic activity previously described, such as Escherichia coli (copper resistance CueO), Pseudomonas syringae and Xanthomonas campestris (copper resistance CopA), Bacillus subtilis (sporulation protein CotA) and Saccharomyces cerevisiae (iron transporter Fet3p), laccase activity is detected under appropriate conditions. This oxidase activity can be spectrophotometrically followed by the oxidation of 2,6-dimethoxyphenol. Specific staining after SDS-PAGE is also possible for some of these proteins. This detection assay can facilitate the study of the multiple functions that such proteins seem to carry out in a variety of microorganisms.  相似文献   

20.
The mechanism of the four-electron reduction of dioxygen by a multicopper oxidase, CueO, was studied based on reactions of single and double mutants with Cys500, a type I copper ligand, and the noncoordinating Asp112 and Glu506, which form hydrogen bonds with the trinuclear copper center directly and indirectly via a water molecule. The reaction of C500S containing a vacant type I copper center produced intermediate I in an EPR-silent peroxide-bound form. The formation of intermediate I from C500S/D112N was restricted due to a reduction in the affinity of the trinuclear copper center for dioxygen. The state of intermediate I was realized to be the resting form of C500S/E506Q and C500S of the truncated mutant Δα5–7CueO, in which the 50 amino acids covering the substrate-binding site were removed. Reactions of the recombinant CueO and E506Q afforded intermediate II, a fully oxidized form different from the resting one, with a very broad EPR signal, g < 2, detectable only at cryogenic temperatures and unsaturated with high power microwaves. The lifetime of intermediate II was prolonged by the mutation at Glu506 involved in the donation of protons. The structure of intermediates I and II and the mechanism of the four-electron reduction of dioxygen driven by Asp112 and Glu506 are discussed.CueO is a multicopper oxidase involved in a copper efflux system of Escherichia coli (13). In contrast to other multicopper oxidases such as laccase and ascorbate oxidase (4), CueO exhibits strong activity toward cuprous ion but does not show activity toward most organic substrates such as 2,6-dimethoxyphenol, catechol, and guaiacol, except considerably low levels toward 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)2 and p-phenylenediamine. This substrate specificity, unique to CueO, originates in the methionine-rich helical region covering the substrate-binding site (57). Nevertheless, CueO has the same catalytic copper centers as other multicopper oxidases: a type I copper that mediates electron transfer and a trinuclear copper center comprised of a type II copper and a pair of type III copper atoms, where dioxygen is reduced to two water molecules (5, 7). The type I copper is responsible for the intense charge transfer band at 610 nm due to Cys(S-)π → Cu2+ and the bands at 430, ∼500, and ∼750 nm due to the charge transfers His(N) → Cu2+ and Cys(S-)σ → Cu2+ and d-d transitions, respectively (4). The type III copper atoms bridged with a hydroxide ion afford an intense charge transfer band, OH- → Cu2+ at ∼330 nm, whereas the type II copper does not give a conspicuous band in the visible region. The type I and II coppers give rise to EPR signals with the hyperfine splitting of small (6.7 milliteslas (mT)) and normal (18.5 mT) magnitudes, respectively, whereas the type III copper atoms are EPR-silent because of the strong anti-ferromagnetic interaction (79).Special attention has been paid to the four-electron reduction of dioxygen by multicopper and terminal oxidases because activated oxygen species such as superoxide, peroxide, etc. are not formed or, if formed, are effectively converted into water molecules without damage to protein molecules. Therefore, this four-electron reduction of dioxygen by multicopper oxidases has been expected to be applicable to biofuel cells (1012). Two reaction intermediates have been detected during reactions of some multicopper oxidases. One of them, intermediate I, could be trapped by the following modified multicopper oxidases so as to interrupt the electron transfer from the type I copper: a plant laccase whose type I copper was substituted with mercury (13); a mixed valent laccase in which the type I copper was oxidized, but the trinuclear copper center was reduced (14); and a Cys → Ser mutant of bilirubin oxidase (15) and Fet3p (16) whose type I copper center became vacant. Although the trinuclear copper center must be fully reduced to produce intermediate I, it has been considered to be a two-electron reduced form and, therefore, also called the peroxide intermediate (13, 16). Another reaction intermediate, II, also called the native intermediate, has been detected at the final stage of a single turnover (15, 1719). Four electrons have already been transferred to dioxygen in this intermediate, and accordingly, intermediate II is in a fully oxidized form to give the g < 2 EPR signal at cryogenic temperatures. Under catalytic conditions, intermediate II is not detected because of its prompt conversion to the fully reduced form for the next enzyme cycle without decaying to the resting form. Both intermediates have a half-life in the order of seconds to minutes, but information to directly show their structures has not been obtained yet. They afford analogous absorption bands at ∼330–350, 450–470, and 680 nm, of which the former two bands have been assigned to the charge transfer from a certain oxygen group to Cu2+ (σ and π transitions) and the latter to the d-d transitions of the trinuclear copper center in the cupric state. The d-d transitions of intermediate II are masked by strong absorption due to the oxidized type I copper (1319).In the present study, we succeeded in trapping intermediates I and II from reactions of a recombinant form of CueO (rCueO) and mutants altered at Cys500, a ligand to the type I copper, and at Asp112 and Glu506 located adjacent to the trinuclear copper center to modify the dioxygen reduction process. The Asp residue is conserved in every multicopper oxidase except for ceruloplasmin, which has Glu instead (Fig. 1). According to the x-ray crystal structures of rCueO (5) and the truncated mutant, Δα5–7CueO, missing the 50 amino acids covering the substrate-binding site (Fig. 2) (7, 20), Asp112 forms a hydrogen bond with His448, a ligand to a type III copper, and indirectly with the water molecule coordinating the type II copper through an ordered water molecule. In a preliminary study on the Asp112 mutants (21), we showed that this acidic amino acid functions in the binding of dioxygen at the trinuclear copper center and may also be involved in the donation of protons to the reaction intermediate(s). On the other hand, one to three acidic amino acids are present in the spacers to connect the copper ligands of multicopper oxidases, His-Cys-His-XXX-His-XXXX-Met-(Leu/Phe). Fig. 2 shows that Glu506 of CueO in this spacer is directly hydrogen-bonded with the His143 ligand to one of the type III copper atoms and indirectly with the hydroxide ion bridged between the type III copper atoms through an ordered water molecule. Therefore, Glu506 is also speculated to play a crucial role in the reduction of dioxygen. We singly and doubly mutated Cys500, Asp112, and Glu506 of CueO to trap intermediates I and II and to elucidate the mechanism behind the four-electron reduction of dioxygen.Open in a separate windowFIGURE 1.Homology of amino acid sequence around the copper binding sites of multicopper oxidase. The numbers 1, 2, and 3 represent the type I, II, and III copper ligands, respectively. BO, Myrothecium verrucaria bilirubin oxidase; RvLc, Rhus vernicifera laccase; CpAO, Cucurbita pepo ascorbate oxidase; TvLc, Trametes versicolor laccase; CcLc, Coprinus cinereus laccase; Fet3p, multicopper oxidase from Saccharomyces cerevisiae; CumA, multicopper oxidase from Pseudomonas putida; CotA, multicopper oxidase from Bacillus subtilis; SLAC, small laccase from Streptomyces coelicolor; hCp, human ceruloplasmin. The single asterisk represents the conserved acidic amino acid residue in all multicopper oxidases, and the double asterisk represents Glu506 in CueO, which forms a hydrogen bond with a His residue coordinating a type III copper and the hydroxide ion bridged between type III coppers.Open in a separate windowFIGURE 2.Structure around the active site of the truncated mutant of CueO (7). Type I, II, and III coppers are represented as spheres. Small spheres, oxygen atoms. The two networks of hydrogen bonds lead to the exterior of the protein molecule, forming the pathway to let protons in and water molecules out. Mutated amino acid residues, Cys500, Glu506, and Asp112, and the networks of hydrogen bonds are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号