首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Dextrans and pullulans of different molar masses in the range of 10(4)-10(5) g/mol were sulphated via a SO3-pyridine complex. The degree of substitution achieved was DS = 2.4 and DS = 1.4 for dextran sulphate and DS = 2.0 and DS = 1.4 for pullulan sulphate, respectively. Confirmation of sulphation was given by FTIR spectroscopy. Asymmetrical S=O and symmetrical C-O-S stretching vibrations were detected at 1260 and 820 cm(-1). Reactivity of the polysaccharide C-atoms was determined by 13C NMR spectroscopy: For dextran this was C-3 > C-2 > C-4, while for pullulan it was C-6 > C-3 > C-2 > C-4.  相似文献   

2.
Direct regioselective 2-O-(p-toluenesulfonylation) of sucrose   总被引:3,自引:0,他引:3  
2-O-(p-Toluenesulfonyl)sucrose was regioselectively synthesized by direct p-toluenesulfonylation of sucrose using N-(p-toluenesulfonyl)imidazole in the presence of molecular sieves at 40 degrees C. The reactivities of the sucrose hydroxy groups toward this sulfonylation increased in the order as follows: OH-2>OH-1'>OH-3'>OH-6>OH-6'. These results were diametrically opposite to the expected sulfonylation with p-toluenesulfonyl chloride in pyridine, for which the reactivity increased in the order as follows: OH-6', OH-6>OH-1'>OH-2. The desired 2-O-(p-toluenesulfonyl)sucrose was readily isolated by simple open reversed-phase column chromatography, followed by recrystallization, thus overcoming the main difficulties associated with regioselectivity, efficiency, and isolation techniques for the practical preparation.  相似文献   

3.
Eleven different glucans (wheat starch, potato amylopectin, potato amylose, pullulan, alternan, regular comb dextran, alpha-cellulose, microcrystalline cellulose, CM-cellulose, chitin, and chitosan) that had their C-6 primary alcohol groups oxidized to carboxyl groups by reaction with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion (TEMPO), were reacted with Azotobacter vinelandii poly-beta-(1-->4)-D-mannuronic acid C-5-epimerase. All of the oxidized polysaccharides reacted with the C-5-epimerase, as evidenced by comparing: (1) differences in the relative viscosities; (2) differences in the carbazole reaction; (3) differences in their susceptibility to acid hydrolysis, and (4) differences in their ability to form calcium gels, before and after reaction. We further show the formation of L-iduronic acid from D-glucuronic acid for oxidized and epimerized amylose by 2D NOESY and COSY + 1H NMR.  相似文献   

4.
Boron trichloride has been found to promote selective deprotection of 1,2- or 1,3-cis oriented secondary benzyl ethers of per-benzylated C-glycosyl derivatives. The reactivity towards BCl(3) follows the order: C-4>or=C-2>C-6>C-3 for C-glucopyranosyl derivatives and C-3>or=C-4>C-6>C-2 for C-galactopyranosyl derivatives. Preparatively useful selective debenzylation at secondary positions was possible after careful control of reaction conditions.  相似文献   

5.
Ding B  Ye Yq  Cheng J  Wang K  Luo J  Jiang B 《Carbohydrate research》2008,343(18):3112-3116
2,2,6,6-Tetramethyl-1-piperidinyloxy radical (TEMPO)-mediated oxidations of substituted polysaccharides were studied at pH 10.2 and at a temperature of 0 °C with NaOCl as the oxidant. The reaction is highly selective, and it was shown that the oxidation can proceed to a yield of nearly 100%. The oxidation process was investigated for several substituted polysaccharides, especially for a series of hydroxypropyl guar gums with different molar degrees of substitution. It was shown that this oxidation can be used for the determination of the degree of substitution at C-6 of the polysaccharide by comparing the difference in oxidation yield between substituted and natural polysaccharides. Studies on several hydroxypropyl guar gums showed that the degrees of substitution at C-6—for MS of 0.08, 0.34, 0.62, and 1.08—are 0.06, 0.24, 0.40, and 0.44, respectively. The results were extended to other polysaccharides such as carboxymethyl cellulose, cationic guar gum, carboxymethyl pullulan, and methyl cellulose. It can be concluded that the TEMPO-mediated oxidation is a useful method for the determination of the DS at the substituted C-6 position for different kinds of modified polysaccharides.  相似文献   

6.
A linear water-insoluble (1-->3)-beta-D-glucan, coded as GL-IV-I, was isolated from the fruit body of Ganoderma lucidum by extracting with NaOH solution. Its derivatives were prepared by using sulfation, carboxymethylation, hydroxyethylation, hydroxypropylation, and methylation, respectively, and these were labeled as S-GL, CM-GL, HE-GL, HP-GL and M-GL. Five derivatives exhibited good water solubility. Their structures and chain conformations were investigated with infrared spectroscopy, elemental analysis (EA), one- and two-dimensional NMR spectroscopy, laser light scattering (LLS), and size-exclusion chromatography combined with LLS (SEC-LLS). The reactivity of the hydroxyl group of GL-IV-I was ordered as C-6>C-4>C-2 for the five derivatives. The degree of substitution (DS) of the derivatives was calculated from EA and NMR spectroscopy to be from 0.32 to 1.18. The weight-average molecular mass (M(w)) of GL-IV-I, S-GL, CM-GL, HE-GL, HP-GL, and M-GL was 13.3 x 10(4), 10.1 x 10(4), 6.3 x 10(4), 7.2 x 10(4), 5.1 x 10(4), and 14.1 x 10(4), respectively. The conformation analysis studies revealed that GL-IV-I exists as a compact coil in dimethyl sulfoxide, whereas the five derivatives are slightly expanded flexible chains in 0.9% aqueous NaCl solution.  相似文献   

7.
NMR analyses of polysaccharide derivatives containing amine groups   总被引:4,自引:0,他引:4  
Amylose, amylopectin, hydroxyethylcellulose, methylcellulose, and cellulose were reacted with diethylaminoethyl chloride HCl salt and 3-chloro-2-hydroxy-propyltrimethylammonium chloride under aqueous alkaline conditions in order to introduce tertiary amine and quaternary ammonium groups into polysaccharides. Degrees of substitution were obtained from 1H- or 13C-NMR spectra of hydrolyzates, and distributions of diethylaminoethyl groups in polysaccharides were measured by 13C-NMR. Since amylose, amylopectin, and hydroxyethylcellulose were soluble in the reaction media, these three polysaccharides had higher reactivity for etherifications than cellulose. Methyl-cellulose, which has hydrophobic methyl groups, had as much reactivity as cellulose. Primary hydroxyl groups, C-6, of polysaccharides had the highest reactivity for diethylaminoethylation.  相似文献   

8.
A facile preparation of triacetylated derivative of 2-phenylthioglycoside of N-acetylneuraminic acid (4) was achieved by treatment with lipase PS in vinyl acetate. The major product 4 has a free hydroxyl group at C-7. Results of time-course HPLC analysis indicate that the reactivity of the hydroxyl groups under this condition is in the following order; C-9 > C-4 > C-8 > C-7.  相似文献   

9.
Anticoagulant activity of a sulfated chitosan   总被引:12,自引:0,他引:12  
Chitin prepared from the shells of rice-field crabs (Somanniathelphusa dugasti) was converted into chitosan with a degree of acetylation of 0.21 and then sulfated with chlorosulfonic acid in N,N-dimethylformamide under semi-heterogeneous conditions to give 87% of water-soluble sulfated chitosan with degree of substitution (d.s) of 2.13. 1H NMR revealed the sulfate substitution at C-2, C-3 and C-6. Gel filtration on Sepharose CL-6B of the sulfated chitosan gave three fractions with average molecular weights of 7.1, 3.5, and 1.9 x 10(4). The three sulfated chitosan preparations showed strong anticoagulant activities, with the same mechanism of action observed for standard therapeutic heparin.  相似文献   

10.
Liu C  Baumann H 《Carbohydrate research》2002,337(14):1297-1307
A new regioselective synthesis of 6-amino-6-deoxycellulose with a DS 1.0 (degree of substitution) at C-6, and its 6-N-sulfonated and its 6-N-carboxymethylated derivatives, without using protecting groups is described in this paper. The reaction conditions were optimized for preparing cellulose tosylate with full tosylation at C-6 and partial tosylation at C-2 and C-3. The nucleophilic substitution (S(N)) reaction of the tosyl group by NaN(3) at low temperature of 50 degrees C in Me(2)SO was achieved completely at C-6, whereas the tosyl groups at C-2 and C-3 were not displaced. In contrast to this, at 100 degrees C the tosyl groups at C-6, and also those at C-2 and C-3, were replaced by azido groups. This regioselective reaction that depends on temperature makes it possible to reach a selective and quantitative S(N) reaction at C-6 at low temperatures. In the subsequent reduction step with LiAlH(4), the azido group at C-6 was reduced to the amino group, and the tosyl groups at C-2 and C-3 were simultaneously completely removed. Also reported is a temperature-dependent, regioselective and complete iodination by nucleophilic substitution of the tosyl group at C-6 at 60 degrees C. At higher temperatures from 75 to 130 degrees C, substitution is also observed to occur at C-2. The selective iodination at 60 degrees C was employed to confirm the complete tosylation at C-6 of cellulose. The reaction products were identified by four different independent quantitative methods, namely 13C NMR, elemental analysis, ESCA, and fluorescence spectroscopy. 6-N-Sulfonated and 6-N-carboxymethylated cellulose derivatives were also synthesized. The new derivatives are potent candidates for structure-function studies, e.g., studies in relation to regioselectively 2-N-sulfonated and 2-N-carboxymethylated chitosan derivatives.  相似文献   

11.
The hydrogen bond systems of cellulose and its derivatives are one of the most important factors regarding their physical- and chemical properties such as solubility, crystallinity, gel formation, and resistance to enzymatic degradation. In this paper, it was attempted to clarify the intra- and intermolecular hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose (3MC). First, the 3MC was synthesized and the cast film thereof was characterized in comparison to 2,3-di-O-methyl cellulose, 6-mono-O-methyl cellulose, and 2,3,6-tri-O-methyl cellulose by means of wide angle X-ray diffraction (WAXD) and (13)C cross polarization/magic angle spinning NMR spectroscopy. Second, the hydrogen bonds in the 3MC film were analyzed by means of FTIR spectroscopy in combination with a curve fitting method. After deconvolution, the resulting two main bands (Fig. 3) indicated that instead of intramolecular hydrogen bonds between position OH-3 and O-5 another intramolecular hydrogen bond between OH-2 and OH-6 may exist. The large deconvoluted band at 3340cm(-1) referred to strong interchain hydrogen bonds involving the hydroxyl groups at C-6. The crystallinity of 54% calculated from the WAXD supports also the dependency of the usually observed crystallization in cellulose of the hydroxyl groups at C-6 to engage in interchain hydrogen bonding.  相似文献   

12.
Deoxyfluorocellulose acetates were prepared from cellulose acetate (CA, degree of substitution by acetyl groups: 2.2 and 1.7) by using diethylaminosulfur trifluoride (DAST) in 1,4-dioxane or diglyme. The maximum degree of substitution of fluorine of the products was approximately 0.60, and depolymerization was not significant during fluorination. The replacement of hydroxyl groups by fluorine atoms occurred exclusively at C-6, as confirmed by carbon-13 NMR spectroscopy. In the presence of pyridine, an N-pyridinium derivative of CA was obtained instead of a deoxyfluoro derivative of cellulose.  相似文献   

13.
Nonenzymatic glycation between ovalbumin (OVA) and seven D-aldohexoses was carried out to study the chemical and antioxidant characteristics of sugar-protein complexes formed in the dry state at 55 degrees C and 65% relative humidity for 2 d through the Maillard reaction (MR). The effects of Maillard reaction products (MRPs) modified with different aldohexoses on radical scavenging, lipid oxidation, and tetrazolium salt (XTT) reducibility were investigated. The results showed that the degree of browning and aggregation and the tryptophan-related fluorescent intensity of glycated proteins displayed a noticeable difference that depended on the sugars used for modification. All the glycated proteins exhibited higher antioxidant activity as compared to a heated control and native OVA, and the antioxidant activity was well correlated with browning development. Furthermore, the order of antioxidant activities for the seven complexes was as follows: altrose/allose-OVAs > talose/galactose-OVAs > glucose-OVA > mannose/glucose-OVAs. This implies that sugar-protein complexes with two sugars known as epimers about C-2 showed a similar antioxidant capacity. From these results, the configuration of a hydroxyl (OH) group about position C-2 did not influence the advanced cross-linking reaction, but the configuration of OH groups about C-3 and C-4 might be very important for formation of MRPs and their antioxidant behaviors.  相似文献   

14.
Liu C  Baumann H 《Carbohydrate research》2005,340(14):2229-2235
This paper investigates the nucleophilic substitution (S(N)) reactions of tosylcellulose with butylamine and pyridine, respectively. The S(N) reactions of tosylcellulose 1 (DS(Total) 2.02; DS(C-6) 1.0) with butylamine carried out at 25, 50, 75 and 100 degrees C in both dimethyl sulfoxide (DMSO) and pure butylamine showed that the regioselectivity of substitution at C-6 of cellulose is temperature dependent: the highest regioselectivity at C-6 can be reached at 25 and 50 degrees C; substitution at C-2 also occurred at 75 and 100 degrees C. The substitution speed in pure butylamine is greater than that in the presence of DMSO. A complete and regioselective substitution at C-6 with a DS of 1.0 was obtained under the conditions of 50 degrees C, 40 h in butylamine. The substitution reactions of 1 with pyridine carried out at 25, 50, 75 and 100 degrees C for 24h in DMSO did not occur. In contrast to this the S(N) reactions done in pure pyridine showed that a temperature- and steric-dependent, regioselective substitution took place at C-6 at temperatures from 25 to 145 degrees C. The highest regioselectivity and completeness at C-6 can be obtained at 100 degrees C for 90 h, whereas at 145 degrees C substitution also occurs at C-2. The results were proved by 1H NMR and 13C NMR spectroscopy.  相似文献   

15.
Lee S  Park H  Seo D  Choi Y  Jung S 《Carbohydrate research》2004,339(3):519-527
Carboxymethylated cyclosophoraoses (CM-Cys) were synthesized by chemical modification of a family of neutral cyclosophoraoses isolated from Rhizobium leguminosarum biovar trifolii. Structural analyses of the CM-Cys were carried out using NMR and FTIR spectroscopies, and the molecular weight distributions were confirmed with MALDI-TOF mass spectrometry. Based on structural characterization, native cyclosophoraoses were successfully substituted with carboxymethyl groups at the OH-4 and OH-6 of the glucose residues with degrees of substitution (DS) ranging from 0.012 to 0.290. CM-Cys was also used as a host for the inclusion complexation with hydrobenzoin (HB) and N-acetyltryptophan (N-AcTrp) as guest molecules. NMR spectroscopic analyses of the complexes showed that the CM-Cys induced chemical shifts of some protons of the guest molecules upon the complexation. Phase solubility studies of the guest molecules by CM-Cys were performed using HPLC, and the results were compared with those of native cyclosophoraoses. The solubility of HB and N-AcTrp was enhanced by the CM-Cys about 5.1- and 299-fold, respectively.  相似文献   

16.
Phytochemical investigation of the methanol extract of Vitex negundo afforded eight lignans; negundin A 1, negundin B 2, 6-hydroxy-4-(4-hydroxy-3-methoxy)-3-hydroxymethyl-7-methoxy-3,4-dihydro-2-naphthaledehyde 3, vitrofolal E 4, (+)-lyoniresinol 5, (+)-lyoniresinol-3alpha-O-beta-d-glucoside 6, (+)-(-)-pinoresinol 7, and (+)-diasyringaresinol 8. The structures of these compounds were elucidated unambiguously by spectroscopic methods including 1D and 2D NMR analysis and also by comparing experimental data with literature data. The tyrosinase inhibitory potency of these compounds has been evaluated and attempts to justify their structure-activity relationships have been made in the present work. The compound 5 was found to be the most potent (IC(50)=3.21 microM) while other compounds demonstrated moderate to potent inhibitions. It was found that the substitution of functional group(s) at C-2 and C-3 positions and the presence of the -CH(2)OH group plays a vital role in the potency of the compounds. The compound 5 can act as a potential lead molecule to develop new drugs for the treatment of hyperpigmentation associated with the high production of melanocytes.  相似文献   

17.
The chemical structure of lipid A from the lipopolysaccharide of the mushroom-associated bacterium Pseudomonas reactans, a pathogen of cultivated mushroom, was elucidated by compositional analysis and spectroscopic methods (MALDI-TOF and two-dimensional NMR). The sugar backbone was composed of the beta-(1'-->6)-linked d-glucosamine disaccharide 1-phosphate. The lipid A fraction showed remarkable heterogeneity with respect to the fatty acid and phosphate composition. The major species are hexacylated and pentacylated lipid A, bearing the (R)-3-hydroxydodecanoic acid [C12:0 (3OH)] in amide linkage and a (R)-3-hydroxydecanoic [C10:0 (3OH)] in ester linkage while the secondary fatty acids are present as C12:0 and/or C12:0 (2-OH). A nonstoichiometric phosphate substitution at position C-4' of the distal 2-deoxy-2-amino-glucose was detected. Interestingly, the pentacyl lipid A is lacking a primary fatty acid, namely the C10:0 (3-OH) at position C-3'. The potential biological meaning of this peculiar lipid A is also discussed.  相似文献   

18.
Mixtures containing the majority of partially O-methylated alditol acetates (PMAAs), necessary for the GC-MS based identification of glycosidic linkages in oligo- and polymeric structures were prepared. Rha, Fuc, Rib, Ara, Xyl, Man, Gal, and Glc were converted to their Me glycosides, and the products were progressively O-methylated using the Purdie reagent at 25 degrees C. Resulting PMGs were assayed by TLC and at times that were optimum for formation of mono-O-methyl derivatives and later for higher degrees of methylation; they were converted to PMAAs, in a process incorporating NaB(2)H(4) reduction. The majority of these can be used as standards for simultaneous identification of pyranosides and some furanosyl units particularly in heteropolysaccharides. The relative reactivities of OH-groups were determined by GC-MS as: Me alpha- and beta-Glcp, HO-2>HO-4>HO-3>HO-6, Me alpha- and beta-Galp, HO-3>HO-2>HO-4>HO-6, Me alpha-Manp, HO-3>HO-2>HO-4>HO-6, Me beta-Manp, HO-3>HO-4HO-6>HO-2, Me alpha-Rhap, OH-3>OH-2>OH-4; Me alphabeta-Fucp, OH-2>OH-3>OH-4, and Me alphabeta-Xylp, OH-2>OH-4>OH-3. The results differ from those obtained with Haworth, Hakomori, and Ciucanu methylation techniques, although some similarities occurred with the more rapid Kuhn method.  相似文献   

19.
A galactoglucomannan (GGM), isolated from the lichen Cladonia ibitipocae, consisted of a (1-->6)-linked main chain of alpha-mannopyranose units, substituted by alpha- and beta-D-galacto (alpha- and beta-D-Galp)-, beta-D-gluco (beta-D-Glcp)- and alpha-D-mannopyranosyl (alpha-D-Manp) groups, and was sulfated giving a sulfated polysaccharide (GGM-SO4) with 42.2% sulfate corresponding to a degree of substitution of 1.29. NMR studies indicated that after sulfation, the OH-6 groups of galactopyranosyl and mannopyranosyl units were preferentially substituted. GGM-SO4 was investigated in terms of its in vitro anticoagulant and in vivo antithrombotic properties. Those of the former were evaluated by its activated partial thromboplastin (APTT) and thrombin time (TT), using pooled normal human plasma, and compared with that of 140 USP units mg(-1) for a porcine intestinal mucosa heparin. Anticoagulant activity was detected in GGM-SO4, but not in GGM. The in vivo antithrombotic properties of GGM-SO4 were evaluated using a stasis thrombosis model in Wistar rats, intravenous administration of 2 mg kg(-1) body weight totally inhibiting thrombus formation. It caused dose-dependent increases in tail transection bleeding time. The results obtained showed that this sulfated polysaccharides is a promising anticoagulant and antithrombotic agent.  相似文献   

20.
Important hydrogen bonding interactions between substrate OH-groups in yeast alpha-glucosidases and oligo-1,6-glucosidase from glycoside hydrolase family 13 have been identified by measuring the rates of hydrolysis of methyl alpha-isomaltoside and its seven monodeoxygenated analogs. The transition-state stabilization energy, DeltaDeltaG, contributed by the individual OH-groups was calculated from the activities for the parent and the deoxy analogs, respectively, according to DeltaDeltaG = -RT ln[(Vmax/Km)analog/(Vmax/Km)parent]. This analysis of the energetics gave DeltaDeltaG values for all three enzymes ranging from 16.1 to 24.0 kJ.mol-1 for OH-2', -3', -4', and -6', i.e. the OH-groups of the nonreducing sugar ring. These OH-groups interact with enzyme via charged hydrogen bonds. In contrast, OH-2 and -3 of the reducing sugar contribute to transition-state stabilization, by 5.8 and 4.1 kJ.mol-1, respectively, suggesting that these groups participate in neutral hydrogen bonds. The OH-4 group is found to be unimportant in this respect and very little or no contribution is indicated for all OH-groups of the reducing-end ring of the two alpha-glucosidases, probably reflecting their exposure to bulk solvent. The stereochemical course of hydrolysis by these three members of the retaining family 13 was confirmed by directly monitoring isomaltose hydrolysis using 1H NMR spectroscopy. Kinetic analysis of the hydrolysis of methyl 6-S-ethyl-alpha-isomaltoside and its 6-R-diastereoisomer indicates that alpha-glucosidase has 200-fold higher specificity for the S-isomer. Substrate molecular recognition by these alpha-glucosidases are compared to earlier findings for the inverting, exo-acting glucoamylase from Aspergillus niger and a retaining alpha-glucosidase of glycoside hydrolase family 31, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号