首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Incubation of low density lipoprotein(s) (LDL) with either lipoprotein lipase or hepatic lipase led to modification of the core lipid composition of LDL. Both lipases modified LDL by substantially reducing core triglyceride content without producing marked differences in size, charge, or lipid peroxide content in comparison to native LDL. The triglyceride-depleted forms of LDL that result from treatment with these two enzymes were degraded at approximately twice the rate of native LDL by human monocyte-derived macrophages (HMDM). Lipase-modified LDL degradation was inhibited by chloroquine, suggesting lysosomal involvement in LDL cellular processing. The increased degradation by macrophages of the LDL modified by these lipases was accompanied by enhanced cholesterol esterification rates, as well as by an increase in cellular free and esterified cholesterol content. In a patient with hepatic triglyceride lipase deficiency, degradation of the triglyceride-rich LDL by HMDM was approximately half that of normal LDL. Following in vitro incubation of LDL from this patient with either lipoprotein or hepatic lipase, lipoprotein degradation increased to normal. Several lines of evidence indicate that LDL modified by both lipases were taken up by the LDL receptor and not by the scavenger receptor. 1) The degradation of lipase-modified LDL in nonphagocytic cells (human skin fibroblast and arterial smooth muscle cells) as well as in phagocytic cells (HMDM, J-774, HL-60, and U-937 cell lines) could be dissociated from that of acetylated LDL and was always higher than that of native LDL. A similar pattern was found for cellular cholesterol esterification and cholesterol mass. 2) LDL receptor-negative fibroblasts did not degrade lipase-modified LDL. 3) A monoclonal antibody to the LDL receptor inhibited macrophage degradation of the lipase-modified LDL. 4) Excess amounts of unlabeled LDL competed substantially with 125I-labeled lipase-modified LDL for degradation by both macrophages and fibroblasts. Thus, lipase-modified LDL can cause significant cholesterol accumulation in macrophages even though it is taken up by LDL and not by the scavenger receptor. This effect could possibly be related to the reduced triglyceride content in the core of LDL, which may alter presentation of the LDL receptor-binding domain of apolipoprotein B on the particle surface, thereby leading to increased recognition and cellular uptake via the LDL receptor pathway.  相似文献   

2.
To clarify the mechanism of smooth muscle cell (SMC)-derived foam cell formation, we investigated beta-very low density lipoprotein (beta-VLDL) cholesterol metabolism in vascular medial SMCs (M-SMCs) from normal rabbits compared with intimal SMCs (I-SMCs) from normal rabbits fed a high-cholesterol diet and LDL receptor-deficient rabbits. For both types of I-SMCs, uptake of [3H]cholesteryl oleate labeled beta-VLDL increased 1.6 times and release of [3H]cholesterol decreased 40% compared with M-SMCs. M-SMCs took up part of the beta-VLDL through the LDL receptor but I-SMCs did not. mRNAs for the VLDL receptor and the LDL receptor relative with 11 ligand binding repeats were expressed at similar levels in all SMCs. M-SMCs expressed more LDL receptor-related protein than I-SMCs. Ligand blotting analysis revealed greater 125I-beta-VLDL binding to a 700-kDa protein in I-SMCs compared with M-SMCs. I-SMCs had higher activities of acid cholesterol esterase and acyl-CoA:cholesterol acyltransferase, and lower activity of neutral cholesterol esterase than M-SMCs in both the absence and the presence of beta-VLDL. These results indicate that I-SMCs accumulate more cholesteryl ester than M-SMCs by taking up more beta-VLDL and by effluxing less cholesterol.  相似文献   

3.
LDL modified by incubation with platelet secretory products caused cholesterol accumulation and stimulation of cholesterol esterification in mouse peritoneal macrophages. Its uptake by the macrophages was a receptor-mediated process, not susceptible to competition by acetyl-LDL or polyanions suggesting independence of the scavenger receptor. Stimulation of the esterification process in macrophages by this modified LDL was inhibited by the lysosomal inhibitor chloroquine, indicating requirement for cellular uptake and lysosomal hydrolysis of the lipoprotein. Within the cell, the modified LDL inhibited cellular biosynthesis of triglycerides in a manner similar to the action of acetyl-LDL but different to the effect of native LDL. In the presence of HDL, acting in the medium as an acceptor for cholesterol, a low rate of cholesterol efflux from cells incubated with this modified LDL as well as with acetyl-LDL was demonstrated. A small reduction in cholesteryl ester synthesis was found in these cells, compared to a 60% reduction in cells incubated with native LDL. Thus it was demonstrated that LDL modified by platelet secretory products could induce macrophage cholesterol accumulation even though it was recognized and taken up via the regulatory LDL receptor.  相似文献   

4.
The uptake and transport of cholesterol-carrying low density lipoprotein (LDL) by the arterial wall is a continuous dynamic process, contributing to the cholesterol homeostasis in the plasma and in the cellular components of the vessel wall. Upon exposure to endothelial cells (EC), LDL interacts in part, with specific surface receptors (LDL-R). In this study we questioned: (i) the distribution of LDL receptors on the apical and basal cell membranes in endothelial cells; (ii) the role of LDL receptors in the control of cholesterol homeostasis and (iii) the translocation of LDL receptor across the EC. To this purpose bovine aortic EC were cultured on filters in a double-chamber system, in Dulbecco's medium supplemented either with 10% fetal calf serum (FCS) or with 10% lipoprotein-deficient serum (LPDS). The cells were exposed for 3h to 13H]acetate (40 microCi) added to both compartments of the cell culture inserts. The newly synthesized [3H]cholesterol was detected by thin layer chromatography and quantified by liquid scintillation counting. The LDL-R were detected in EC protein homogenates by immunoblotting using a monoclonal antibody against LDL-R (IgG-C7); the intracellular pathway of LDL-R was examined by electron microscopy using a complex made of protein A 5 nm or 20 nm colloidal gold particles and an anti-LDL receptor antibody (Au-PA-C7). To evaluate the distribution and the transport of LDL-R from one cell surface to the other, EC grown in LPDS were radioiodinated either on the apical or on the basolateral surface, incubated on the same surface with LDL, and subsequently biotinylated on the opposite non-radiolabeled surface. The EC were further solubilized and the protein extract immunoprecipitated with anti-LDL-R antibody or with mouse IgG (as control). The eluted antigen-antibody complexes were precipitated with streptavidin-agarose beads, solubilized, and subjected to SDS-PAGE. The results showed that: (a) the LDL-R were present on both endothelial cell fronts; (b) using the complex Au-PA-C7, the LDL-R were localized in endothelial plasmalemmal vesicles as well as coated pits and coated vesicles in multivesicular bodies and lysosomes, irrespective of the cell surface exposed to the complex; (c) biochemical assays indicated that upon ligand binding, the LDL-R were translocated preferentially from the apical to the basal plasma membrane.  相似文献   

5.
Changes in low density lipoprotein (LDL) lipid composition were shown to alter its interaction with the LDL receptor, thus affecting its cellular uptake. Upon incubation of LDL with 5 units/ml cholesterol esterase (CEase) for 1 h at 37 degrees C, there was a 33% reduction in lipoprotein cholesteryl ester content, paralleled by an increment in its unesterified cholesterol. CEase-LDL, in comparison to native LDL, was smaller in size, possessed fewer free lysine amino groups (by 14%), and demonstrated reduced binding to heparin (by 83%) and reduced immunoreactivity against monoclonal antibodies directed toward epitopes along the LDL apoB-100. Incubation of CEase-LDL with the J-774 macrophage-like cell line resulted in about a 30% reduction in lipoprotein binding and degradation in comparison to native LDL, and this was associated with a 20% reduction in macrophage cholesterol mass. Similarly, CEase-LDL degradation by mouse peritoneal macrophages, human monocyte-derived macrophages, and human skin fibroblasts was reduced by 20-44% in comparison to native LDL. CEase-LDL uptake by macrophages was mediated via the LDL receptor and not the scavenger receptor. CEase activity toward LDL was demonstrated in plasma and in cells of the arterial wall such as macrophages and endothelial cells. Thus, CEase modification of LDL may take place in vivo, and this phenomenon may have a role in atherosclerosis.  相似文献   

6.
The objective of this study was to determine whether high density lipoproteins (HDL) that have been treated with hepatic lipase have an enhanced ability to deliver cholesterol to cells. Human HDL was incubated with rat hepatic lipase, reisolated, and subjected to compositional analysis. Approximately 28% of the HDL phosphatidylcholine was hydrolyzed by the hepatic lipase but no change was detected in the cholesterol or apoprotein content of the HDL compared to HDL incubated with heat-inactivated hepatic lipase. Cultured rat hepatoma cells exposed to hepatic lipase-modified HDL showed an increased uptake of HDL free cholesterol relative to cells exposed to control HDL. This increased delivery of HDL free cholesterol was demonstrated by both isotopic and mass determinations and it contributed to a 1.6-fold increase in total cellular cholesterol content relative to cells treated with control HDL. The free cholesterol delivered by the HDL is functionally available to the cell as evidenced by the conversion of radiolabeled free cholesterol to cholesteryl ester. The stimulation of free cholesterol delivery was dose-dependent up to a level of 100 micrograms of HDL free cholesterol/ml of extracellular medium, and was directly related to the extent of phosphatidylcholine hydrolysis. The enhanced cellular accumulation of HDL free cholesterol observed with hepatic lipase appears to be due to the phospholipase activity of this enzyme, since similar results were obtained with HDL that had been modified by snake venom phospholipase A2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Low density lipoproteins (LDL) contain apolipoprotein B-100 and are cholesteryl ester-rich, triglyceride-poor macromolecules, arising from the lipolysis of very low density lipoproteins. This review will describe the receptors responsible for uptake of whole LDL particles (holoparticle uptake), and the selective uptake of LDL cholesteryl ester. The LDL-receptor mediates the internalization of whole LDL through an endosomal-lysosomal pathway, leading to complete degradation of LDL. Increasing LDL-receptor expression by pharmacological intervention efficiently reduces blood LDL concentrations. The lipolysis stimulated receptor and LDL-receptor related protein may also lead to complete degradation of LDL in presence of free fatty acids and apolipoprotein E- or lipase-LDL complexes, respectively. Selective uptake of LDL cholesteryl ester has been demonstrated in the liver, especially in rodents and humans. This activity brings five times more LDL cholesteryl ester than the LDL-receptor to human hepatoma cells, suggesting that it is a physiologically significant pathway. The lipoprotein binding site of HepG2 cells mediates this process and recognizes all lipoprotein classes. Scavenger receptor class B type I and CD36, which mediate the selective uptake of high density lipoprotein cholesteryl ester, are potentially involved in LDL cholesteryl ester selective uptake, since they both bind LDL with high affinity. It is not known whether they are identical to the uncloned lipoprotein binding site and if the selective uptake of LDL cholesteryl ester produces a less atherogenic particle. If this is verified, pharmacological up-regulation of LDL cholesteryl ester selective uptake may become another therapeutic approach for reducing blood LDL-cholesterol levels and the risk of atherosclerosis.  相似文献   

8.
OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than 0.05). CONCLUSION--Over 12 years the lipid profile deteriorated significantly in this healthy cohort of young men. Smoking, a low high density lipoprotein concentration and a raised low density lipoprotein concentration were all associated with coronary heart disease in middle aged Scottish men, whereas there was no association for total cholesterol concentration. The findings have implications for screening programmes.  相似文献   

9.
The cholesterol oxidase-catalyzed oxidation of cholesterol in native low density (LDL) and high density lipoproteins (HDL3) as well as in monolayers prepared from surface lipids of these particles, has been examined. The objective of the study was to compare the oxidizability of cholesterol, and to examine the effects of lipid packing on oxidation rates. When [3H]cholesterol-labeled lipoproteins were exposed to cholesterol oxidase (Streptomyces sp.), it was observed that LDL [3H]cholesterol was oxidized much faster than HDL3 [3H]cholesterol. This was true both at equal cholesterol concentration per enzyme unit, and at equal amounts of lipoprotein particles per enzyme unit. About 95% of lipoprotein [3H]cholesterol was available for oxidation. The complete degradation of lipoprotein sphingomyelin by sphingomyelinase (Staphylococcus aureus) resulted in a 10-fold increase in the rate of LDL [3H]cholesterol oxidation, whereas the effects on rates of HDL3 [3H]cholesterol oxidation were less dramatic. A monolayer study with LDL surface lipids indicated that degradation of sphingomyelin loosened the lipid packing, because the ceramide formed occupied a smaller surface area than the parent sphingomyelin, and since the condensing effect of cholesterol on sphingomyelin packing was lost. The effects of sphingomyelin degradation on lipid packing in monolayers of HDL3-derived surface lipids were difficult to determine from monolayer experiments. Based on the finding that cholesterol oxidases are surface pressure-sensitive with regard to their catalytic activity, these were used to estimate the surface pressure of intact LDL and HDL3. The cut-off surface pressure of a Brevibacterium enzyme was 25 mN/m and 20 mN/m in monolayers of LDL and HDL3-derived surface lipids, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors.  相似文献   

11.
12.
An electron spin probe study was made of the effect of lipid peroxidation (LPO) on the structure of surface proteolipid layer of human serum low-density lipoproteins (LDL). The results obtained with a positively charged spin label and stearic acid spin probes with doxyl labels at positions 5, 12, and 16 revealed that LPO caused a decrease in phospholipid molecule mobility both in the region of polar heads and in the region of acyl chains till the depth of at least 1.7 mm from water-lipid interface. Under relatively high levels of oxidation (more than 6 mumol MDA/g LDL phospholipid) the polarity of lipid phase increased. The decrease in efficiency of tryptophan fluorescence quenching by nitroxide fragments incorporated in hydrophobic regions at the depth of approximately 2 nm from water-lipid interface indicated that lipid-protein interaction was disturbed as a result of oxidation of LDL lipids. In addition, the LPO-induced modification of apo-B, the main protein of LDL, was examined with maleimide spin label. LPO led to increase in mobility of strongly immobilized maleimide labels and in the number of weakly immobilized ones. Oxidized LDL revealed decreased ability to incorporate spin-labeled steroid (androstane) as compared to native ones. LPO-induced structural changes of LDL surface are supposed to be a reason of enhanced accumulation of cholesterol in human monocytes during their incubation with oxidized LDL. The cholesterol content in red cells was shown to be directly correlated to MDA content in apo-B containing lipoproteins but not in whole serum. Our findings suggest that free radical modification of serum lipoproteins but not solely an increased level of LPO products in blood is one important cause for cholesterol accumulation in cells and, apparently, for their transformation into foam cells during atherosclerosis.  相似文献   

13.
Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase.  相似文献   

14.
Treatment of HepG2 cells in lipoprotein-deficient media with 4,4,10 beta-trimethyl-trans-decal-3 beta-ol (TMD) abolished the incorporation of [3H]acetate into cholesterol with concomitant accumulation of squalene 2,3(S)-oxide and squalene 2,3(S):22(S),23-dioxide, indicating a specific inhibition of oxidosqualene cyclase. The activity of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase was affected in a biphasic manner, being inhibited by 30% at low concentrations of TMD and stimulated by 30% at concentrations that completely shut down oxidosqualene cyclase. Treatment with TMD (greater than 20 micrograms/ml) doubled the specific binding and internalization of low density lipoproteins (LDL) and also enhanced their degradation to a degree comparable to that produced by lovastatin, a well-known inhibitor of HMG-CoA reductase. The enhanced binding of LDL to HepG2 cells appeared to occur as a result of an increase in the number of binding sites with no change in their binding affinity for the lipoprotein. At concentrations that completely inhibited cholesterol biosynthesis, TMD did not affect the ability of LDL-derived cholesterol to stimulate cholesterol esterification by seven- to tenfold or to stimulate bile acid secretion to a lesser degree. However, TMD treatment inhibited overall bile acid secretion by 75-85%. The compound had no inhibitory effect on the rates of secretion of either apolipoprotein B or of cholesterol by HepG2 cells into the culture medium. These data demonstrate that a specific inhibition of the sterol branch of isoprenoid biosynthetic pathway in hepatic cells by TMD is sufficient to induce the expression of LDL receptors and that the cholesterol delivered by LDL is available for normal metabolic purposes of the cell.  相似文献   

15.
Endothelial cells produce nitric oxide which is considered to serve as a major source of endothelial derived relaxing factor activity. It has been demonstrated that activation of mouse brain endothelium by TNF-alpha and IFN-gamma led to accumulation of nitrite which is presumably formed by oxidation of nitric oxide. A number of studies suggest that reactive oxygen species produced by cytokine-activated cells are involved in the conversion of nitric oxide to nitrites and nitrates. We investigated whether low density lipoprotein (LDL), acting as a radical scavenger, is able to inhibit nitrite accumulation in mouse brain endothelial cell cultures and in a cell-free system in which sodium nitroprusside was used as a source of nitric oxide. A comparison of these two models indicates the active involvement of LDL in suppressing nitrite accumulation in murine endothelial cultures.  相似文献   

16.
The extracellular matrix molecule hyaluronan (HA) accumulates in human atherosclerotic lesions. Yet the reasons for this accumulation have not been adequately addressed. Because abnormalities in lipid metabolism promote atherosclerosis, we have asked whether disrupted cholesterol homeostasis alters HA accumulation in low density lipoprotein receptor-deficient cell cultures. Cultured aortic smooth muscle cells (ASMC) from Watanabe heritable hyperlipidemic (WHHL) rabbits and skin fibroblasts from homozygous patients with familial hypercholesterolemia accumulated 2-4-fold more HA than corresponding cells from age- and sex-matched normolipidemic rabbits and individuals. This occurred in both cell-associated and secreted HA fractions and was independent of cell density or medium serum concentration. WHHL ASMC cultures synthesized twice the proportion of high molecular mass HA (>2x10(6) Da) as normal rabbit ASMC but showed a lower capacity to degrade exogenous [3H]HA. Most importantly, cholesterol depletion or blocking cholesterol synthesis markedly reduced HA accumulation in WHHL ASMC cultures, whereas cholesterol replenishment or stimulation of cholesterol synthesis restored elevated HA levels. We conclude the following: 1) maintaining normal HA levels in cell cultures requires normal cell cholesterol homeostasis; 2) HA degradation may contribute to but is not the predominant mechanism to increase high molecular mass HA accumulation in low density lipoprotein receptor-deficient WHHL ASMC cultures; and 3) elevated accumulation of HA depends on cellular or membrane cholesterol content and, potentially, intact cholesterol-rich microdomains.  相似文献   

17.
Cholesteryl ester-loaded macrophages, or foam cells, are a prominent feature of atherosclerotic lesions. Low density lipoprotein (LDL) receptor-mediated endocytosis of native LDL is a relatively poor inducer of macrophage cholesteryl ester accumulation. However, the data herein show that in the presence of a very small amount of sphingomyelinase, LDL receptor-mediated endocytosis of 125I-LDL was enhanced and led to a 2-6-fold increase in 125I-LDL degradation and up to a 10-fold increase in cholesteryl ester accumulation in macrophages. The enhanced lipoprotein uptake and cholesterol esterification was seen after only approximately 12% hydrolysis of LDL phospholipids, was specific for sphingomyelin hydrolysis, and appeared to be related to the formation of fused or aggregated spherical particles up to 100 nm in diameter. Sphingomyelinase-treated LDL was bound by the macrophage LDL receptor. However, when unlabeled acetyl-LDL, a scavenger receptor ligand, was present during or after sphingomyelinase treatment of 125I-LDL, 125I-LDL binding and degradation were enhanced further through the formation of LDL-acetyl-LDL mixed aggregates. Experiments with cytochalasin D suggested that endocytosis, not phagocytosis, was involved in internalization of sphingomyelinase-treated LDL. Nonetheless, the sphingomyelinase effect on LDL uptake was macrophage-specific. These data illustrate that LDL receptor-mediated endocytosis of fused LDL particles can lead to foam cell formation in cultured macrophages. Furthermore, since both LDL and sphingomyelinase are present in atherosclerotic lesions and since some lesion LDL probably is fused or aggregated, there is a possibility that sphingomyelinase-treated LDL is a physiologically important atherogenic lipoprotein.  相似文献   

18.
The catabolism of intravenously injected 125I-labelled low density lipoproteins (LDL) was followed in normal miniature swine for 2 weeks. When compared with the two-exponential model, the decay curve of the plasma radioactivity associated with the LDL fraction was best described by a three-exponential model. In this system, the half-lives were 4.5 +/- 3.7, 19.7 +/- 6.6, and 127 +/- 70 h (mean of four studies). Assuming a kinetic model with metabolism of LDL in the rapidly equilibrating compartment and two slower equilibrating compartments (a model requiring three exponentials), the mean fractional catabolic rate for apo-LDL was calculated to be 0.015 h-1. Therefore, if at steady state, the synthetic rate for apo-LDL in the same pigs would be 5.6 +/- 4.1 mg/h. Different kinetic models using two or three exponentials would provide different values for the synthetic rate of apo-LDL. However, in view of the known existence of at least three major equilibrating pools for LDL in plasma, liver, and lymph, and in view of the present results, the kinetic model for LDL metabolism should be better represented by a three-exponential system.  相似文献   

19.
The intracellular accumulation of unesterified cholesterol was examined during 24 h of low density lipoprotein (LDL) uptake in normal and Niemann-Pick C fibroblasts by fluorescence microscopy with filipin staining and immunocytochemistry. Perinuclear fluorescence derived from filipin-sterol complexes was observed in both normal and mutant cells by 2 h. This perinuclear cholesterol staining reached its peak in normal cells at 6 h. Subsequent development of fluorescence during the remaining 18 h of LDL incubation was primarily limited to the plasma membrane region of normal cells. In contrast, mutant cells developed a much more intense perinuclear fluorescence throughout the entire 24 h of LDL uptake with little enhancement of cholesterol fluorescence staining in the plasma membranes. Direct mass measurements confirmed that internalized LDL cholesterol more readily replenishes the plasma membrane cholesterol of normal than of mutant fibroblasts. Perinuclear filipin-cholesterol fluorescence of both normal and mutant cells was colocalized with lysosomes by indirect immunocytochemical staining of lysosomal membrane protein. Abnormal sequestration of LDL cholesterol in mutant cells within a metabolically latent pool is supported by the finding that in vitro esterification of cellular cholesterol could be stimulated in mutant but not in normal cell homogenates by extensive disruption of the intracellular membranous structures of cells previously cultured with LDL. Deficient translocation of exogenously derived cholesterol from lysosomes to other intracellular membrane sites may be responsible for the delayed homeostatic responses associated with LDL uptake by mutant Niemann-Pick Type C fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号