首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
IL-4 secreted by activated T cells is a pleiotropic cytokine affecting growth and differentiation of diverse cell types such as T cells, B cells, and mast cells. We investigated the upstream regulatory elements of the human IL-4 promoter. A novel T cell-specific negative regulatory element (NRE) composed of two protein-binding sites were mapped in the 5' flanking region of the IL-4 gene: -311CTCCCTTCT-303 (NRE-I) and -288CTTTTTGCTT-TGC-300 (NRE-II). A T cell-specific protein Neg-1 and a ubiquitous protein Neg-2 binding to NRE-I and NRE-II, respectively, were identified. Furthermore, a positive regulatory element was found 45 bp downstream of the NRE. The enhancer activity of the PRE was completely suppressed when the NRE was present. These data suggest that IL-4 promoter activity is normally down-regulated by an NRE via repression of the enhancer positive regulatory element. These data may have implications for the stringent control of IL-4 expression in T cells.  相似文献   

10.
The promoter and exon 1 of the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a mouse genomic library. The 5'-flanking DNA lacked TATA and CAAT sites but contained GC rich regions typically found in constitutively expressed house keeping genes. Fusion gene constructs, containing RII beta 5'-flanking sequences and the bacterial CAT structural gene, were transfected into NB2a neuroblastoma cells and CHO cells. The NB2a cells expressed high levels of CAT activity. CHO cells expressed CAT activity at 5% of the level seen in the NB2a cells. Transfection of deletion constructs into both cell lines was used to define the core promoter and enhancer elements. The core promoter was situated between bp -291/-121. An enhancer element was located between bp -1426/-1018.  相似文献   

11.
12.
13.
14.
15.
16.
The recently described NK2 family of homeodomain proteins are key developmental regulators. In Drosophila melanogaster, two members of this family, bagpipe and tinman, are required for visceral and cardiac mesoderm formation, respectively. In vertebrates, tinman appears to represent a family of closely related NK2 genes, including Nkx-2.5, that are expressed at an early stage in precardiac cells. Consistent with a role for Nkx-2.5 in heart development, inactivation of the Nkx-2.5 gene in mice causes severe cardiac malformations and embryonic lethality. However, little is known about the molecular action of Nkx-2.5 and its targets in cardiac muscle. In this paper, we report the identification and characterization of a functional and highly conserved Nkx-2.5 response element, termed the NKE, in the proximal region of the cardiac atrial natriuretic factor (ANF) promoter. The NKE is composed of two near-consensus NK2 binding sites that are each able to bind purified Nkx-2.5. The NKE is sufficient to confer cardiac cell-specific activity to a minimal TATA-containing promoter and is required for Nkx-2.5 activation of the ANF promoter in heterologous cells. Interestingly, in primary cardiocyte cultures, the NKE contributes to ANF promoter activity in a chamber- and developmental stage-specific manner, suggesting that Nkx-2.5 and/or other related cardiac proteins may play a role in chamber specification. This work provides the identification of a direct target for NK2 homeoproteins in the heart and lays the foundation for further molecular analyses of the role of Nkx-2.5 and other NK2 proteins in cardiac development.  相似文献   

17.
18.
19.
Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号