首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated mitochondrial import and processing of the precursor for human ornithine transcarbamylase (OTC; carbamoylphosphate:L-ornithine carbamoyltransferase, EC 2.1.3.3) in HeLa cells stably transformed with cDNA sequences encoding OTC precursors carrying mutations in their leader peptides. The mutant precursors studied included two with amino acid substitutions in the 32-amino-acid leader peptide (glycine for arginine at position 23, designated gly23; glycines for arginines at positions 15, 23, and 26, designated gly15,23,26) and two with deletions (deletion of residues 8 to 22, designated d8-22; deletion of residues 17 to 32, designated N16). Specific immunoprecipitation with anti-OTC antiserum of extracts of L-[35S]methionine-labeled cells expressing these mutations yielded only precursor species; neither mature nor intermediate-size OTC subunits were observed. Fractionation of radiolabeled cells, however, revealed important differences among the various mutants: the gly23 precursor was associated with mitochondria and was not detected in the cytosol; the d8-22 and N16 precursors were found with both the mitochondrial fraction and the cytosol; only the gly15,23,26 precursor was detected exclusively in the cytosol. A large fraction of each of the mitochondrially associated OTC species was in a trypsin-protected compartment. In particular, the gly23 precursor behaved in trypsin protection and mitochondrial fractionation studies in a manner consistent with its translocation into the mitochondrial matrix. On the other hand, the lack of binding of the gly23 protein to a delta-N-phosphonoacetyl-L-ornithine affinity column, which specifically recognizes active OTC enzyme, indicated that, despite its intramitochondrial location, the mutant protein did not assemble into the normal, active trimer. Further, the gly23 mutant precursor was unstable within the mitochondria and was degraded with a t1/2 of less further than 4 h. Thus, we have shown that, in intact HeLa cells, cleavage of the OTC leader peptide is not required for translocation into mitochondria, but is required for assembly into active enzyme.  相似文献   

2.
Cos 7 cells transfected with human atrial natriuretic polypeptide (hANP) gene with SV40 enhancer and replication origin sequences expressed hANP gene. The expressed RNA was indistinguishable from native hANP mRNA and the transcribed protein seemed to be properly processed to alpha-hANP and beta-hANP. This system provides a useful approach to investigate the processing of hANPs and the structure-function relationship of amino acid sequences of hANPs.  相似文献   

3.
Ornithine transcarbamylase (OTC) deficiency, the most common inborn error of the urea cycle, shows X-linked inheritance with frequent new mutations. Using polymerase chain reaction (PCR) amplification of the individual exons including adjacent intron sequences followed by direct sequencing of the amplimers we identified four new mutations affecting donor splice sites of introns 2, 5, 6, and 8. The mutation at the first position of intron 2 was a G to A exchange associated with acute neonatal hyperammonemia in a male patient at the age of 5 months. A G to C substitution in intron 5 was detected in a boy who developed 2 days after birth hypotonia, and respiratory distress, followed by severe hyperammonemia and terminal coma. The intron 6 mutation, a G to T substitution, was detected in a girl presenting with first episodes of vomiting and agitation at the age of 2 months. The mutation in intron 8, also a G to T transition, caused fatal hyperammonemia and early death at the age of 15 days in a male patient. We present four donor splice site mutations resulting in severe neonatal or very early onset of the disease in three boys and in one female patient. As the GT dinucleotide of the 5 donor splice site is invariant and required for correct splicing the described mutations may lead to improperly spliced mRNAs and aberrant gene products.  相似文献   

4.
When Bacillus subtilis cells grew and sporulated on glucose-nutrient broth, ornithine transcarbamylase (OTCase) was synthesized in the early stationary phase and then inactivated. The loss of OTCase activity was much slower in a mutant that was deficient in a major intracellular serine protease (ISP). Immunochemical analysis showed that synthesis of OTCase decreased to a low, but detectable, level during its inactivation and that loss of activity was paralleled by loss of cross-reactive protein. Because the antibodies were capable of detecting denatured and fragmented forms of OTCase, we conclude that inactivation involved or was rapidly followed by degradation in vivo. Native OTCase was not degraded in crude extracts or when purified ISP and OTCase were incubated together under a variety of conditions. Synthesis of OTCase was not shut off normally in the ISP-deficient mutant. When the effects of continued synthesis were minimized, OTCase was degraded only slightly slower in the mutant than in its parent. Thus, the mutant had unanticipated pleiotropic characteristics, and it was unlikely that ISP played a major role in the degradation of OTCase in vivo.  相似文献   

5.
Bailey RJ  Hay DL 《Peptides》2006,27(6):1367-1375
Only limited pharmacological characterization of the CGRP1 receptor, a heterodimer of the calcitonin (CT) receptor-like receptor (CL) and receptor activity-modifying protein 1 has been performed in cells that do not endogenously express RAMP2. We characterized the receptor in RAMP-deficient Cos 7 cells by measuring cAMP responses following agonist treatment in the absence or presence of antagonists. Potent cAMP responses to human alpha-and beta-CGRP (Cys(Et)2,7)halphaCGRP and human adrenomedullin (AM) were observed. Adrenomedullin15-52 was also an effective agonist of the CGRP1 receptor but human and salmon calcitonin and rat amylin were only weak agonists. As expected, BIBN4096BS and CGRP(8-37) were effective antagonists of the CGRP1 receptor. (Cys(Acm)2,7)halphaCGRP also antagonized CGRP responses. Antagonists of related receptors were only weakly able to inhibit CGRP responses.  相似文献   

6.
7.
Long-chain polyunsaturated fatty acids (LC-PUFA) are important components of cellular structure and function. Most of LC-PUFA are derived from linoleic acid and a-linolenic acid. In plants and fungi, these two acids can be synthesized from oleic acid via the action of two enzymes, 12 and 15-desaturases. Due to lack of these enzymatic activities and the ability to synthesize these two essential fatty acids, animals must obtain them from the diet. In this report, we demonstrated the expression of a fungal 12-desaturase gene in mouse L cells incubated in serum-free medium. The results showed a significant increase in the amount of linoleic acid with a concomitant decrease of oleic acid in cellular lipids. Most of the newly formed linoleic acid was incorporated into cellular phospholipids, particularly phosphatidylcholine. The increase of linoleic acid provided the substrate for the endogenous synthesis of (n-6) LC-PUFA, such as eicosadienoic acid (EDA), dihomo--linoleic acid (DGLA) and arachidonic acid (AA). Prolonged incubation further increased the levels of linoleic acid derived from oleic acid by the action of 12-desaturase, and the levels of 20:2n-6 produced from linoleic acid by the action of the endogenous elongase. However, prolonged incubation suppressed significantly the formation of DGLA and AA. In a separate study, a fungal 6-desaturase gene has also been expressed in the mouse L cells incubated in serum-containing medium. The result shows a significant increase in levels of 20:3n-6 and 20:4n-6. These findings demonstrate that through genetic modification, it is possible to (1) generate cell lines which no longer require dietary 'essential' fatty acids and (2) alter the endogenous fatty acid metabolism to enhance the production of LC-PUFA and their derivatives.  相似文献   

8.
Ornithine transcarbamylase (OTC) is an X-linked, liver-specific enzyme that catalyzes the second step of the urea cycle. In humans, inherited deficiency of OTC in hemizygous affected males usually results in severe ammonia intoxication and early death. To characterize mutations responsible for OTC deficiency, we used the PCR to amplify cDNAs prepared from patient livers which demonstrated no OTC enzyme activity and no OTC cross-reacting material on western blots. In three of seven cases, smaller than normal products were observed. Sequencing of these cDNAs revealed that two were missing exon 7 of the OTC gene and that the other was missing the first 12 bp of exon 5. Sequencing of genomic DNA from these three patients revealed that one mutant missing exon 7 had a T-to-C substitution in the 5' splice donor site of intron 7. The other mutant missing exon 7 had an A-to-G change in the third position of intron 7. It is interesting that both of these mutations resulted in skipping the preceding exon rather than in inclusion of some or all of the affected intron. In the third mutant, an A-to-T substitution was found in the 3' splice acceptor site at the end of intron 4. Here, a cryptic splice acceptor site within exon 5 was used. Northern blotting of liver RNA from these patients demonstrated (a) reduced, but significant, amounts of OTC mRNA in one of the patients who had a deleted exon 7 but (b) very little OTC mRNA in the other two patients. We propose that these point mutations, which result in aberrant splicing of the OTC pre-mRNAs, lead to OTC deficiency through either decreased efficiency of mRNA export from the nucleus to the cytosol or synthesis of enzyme subunits that are unstable and rapidly degraded. We speculate that abnormal mRNA splicing may represent a relatively common mechanism in the pathogenesis of this disease.  相似文献   

9.
The conventional whole cell patch-clamp technique was used to measure the resting membrane conductance and membrane currents of nonstimulated cultured human umbilical vein endothelial cells (HUVECs) in different ionic conditions. Three electrophysiological phenotypes of cultured HUVECs (n = 122) were determined: first, 20% of cells as type I mainly displaying the inwardly rectifying potassium current (IKi); second, 38% of cells as type II in which IKi was super-posed on a TEA-sensitive, delayed rectifying current; third, 27% of cells as type III predominantly displaying the outwardly rectifying current which was sensitive to TEA and slightly inhibited by a chloride channel blocker niflumic acid (N.A.). In cells of type I, the mean zero-current potential (V0) was dependent on extracellular K+ ([K+]o) but not on Cl-, indicating major permeability to K+. Whereas V0 of type II was also affected by extracellular Cl- ([Cl-]o), indicating the contribution of an outward Cl- current in setting V0. The cells of type III were not sensitive to decrease of [Cl-]o and the outward current was activated in a relative stable voltage range. This varying phenotypic expression and multipotential behavior of HUVECs suggests that the electrical features of HUVEC may be primarily determined by embryonic origin and local effect of the microenvironment. This research provided the detailed electrophysiological knowledge of the endothelial cells.  相似文献   

10.
11.
Insertional mutagenesis in a haploid background can disrupt gene function. We extend our earlier work by using a retroviral gene-trap vector to generate insertions in >98% of the genes expressed in a human cancer cell line that is haploid for all but one of its chromosomes. We apply phenotypic interrogation via tag sequencing (PhITSeq) to examine millions of mutant alleles through selection and parallel sequencing. Analysis of pools of cells, rather than individual clones enables rapid assessment of the spectrum of genes involved in the phenotypes under study. This facilitates comparative screens as illustrated here for the family of cytolethal distending toxins (CDTs). CDTs are virulence factors secreted by a variety of pathogenic Gram-negative bacteria responsible for tissue damage at distinct anatomical sites. We identify 743 mutations distributed over 12 human genes important for intoxication by four different CDTs. Although related CDTs may share host factors, they also exploit unique host factors to yield a profile characteristic for each CDT.  相似文献   

12.
Summary The electron microscopical localization of ornithine transcarbamylase in rat liver was investigated by a protein A—gold technique applied to thin sections of Lowicryl K4M- or LR gold-embedded materials and to ultracryosections. Gold particles were exclusively confined to mitochondria of the parenchymal cells but not of sinus-lining cells. In mitochondria, gold particles were present in the matrix and closely associated with the inner membrane. The most intensive labelling was obtained from ultracryosections, while weaker labelling was noted in sections of materials embedded in both Lowicryl K4M and LR gold. The association of the enzyme with the inner membrane was confirmed by quantitative analysis of distribution pattern.  相似文献   

13.
Histochemical assay for ornithine transcarbamylase (OTC) activity in fixed frozen hepatic sections from a woman heterozygous for OTC deficiency revealed two populations of hepatocytes: those with normal activity and those with no activity. This observation, in conjunction with data from previous family studies, confirms the hypothesis that the gene for OTC is X-linked. It also provides the first cytologic demonstration of cellular mosaicism for a liver-specific cell product.  相似文献   

14.
In an attempt to use mouse metallothionein-I (mMT-I) regulatory sequences to direct expression of human ornithine transcarbamylase in the liver of transgenic animals, fusion genes joining either 1.6 kilobases or 185 base pairs of the mMT-I regulatory region to the human ornithine transcarbamylase protein-coding sequence were used to produce transgenic mice. In mice carrying the fusion gene with 1.6 kilobases of the mMT-I 5'-flanking sequences, transgene expression was observed in a wide range of tissues, but, unexpectedly, expression in liver was never observed. Surprisingly, in mice carrying the fusion gene regulated by only 185 base pairs of the mMT-I 5'-flanking sequences, the transgene was expressed exclusively in male germ cells during the tetraploid, pachytene stage of meiosis.  相似文献   

15.
16.
3H-glycine and 14C-serine were injected intraperitoneally, during treatment of spf mutant mice with 2% sodium benzoate in drinking water. Urinary hippurate was separated by thin layer chromatography and counted for 3H and 14C labels representing transported and newly synthesized glycine, respectively. The specific activity of 3H-hippurate increased significantly in mutant and normal groups, while the increase of 14C was seen only in mutants. The ratio of specific activity 3H:14C showed significant increases in normal (0.99 to 1.93; p less than 0.01) and mutant (1.53 to 3.05; p less than 0.05) groups, which shows that glycine transported from body pools played a significantly greater role in the conjugation of benzoate, compared to glycine synthesized de novo from serine. In spf mice, benzoate treatment also resulted in a decrease in orotate excretion, indicating amelioration of the hyperammonemic state. It is postulated that the elimination of glycine transported from body pools may be the primary mechanism for the reduction of ammoniagenicity in benzoate therapy, and that the de novo synthesis of glycine may have a secondary effect.  相似文献   

17.
Genetic manipulation of embryonic stem (ES) cells has been used to produce genetically engineered mice modeling human disorders. Here we describe a novel, additional application: selection for a phenotype of interest and subsequent transmission of that phenotype to a living mouse. We show, for the first time, that a cellular phenotype induced by ENU mutagenesis in ES cells can be transmitted and recapitulated in adult mice derived from these cells. We selected for paraquat-resistant (PQR) ES clones. Subsequent injection of these cells into blastocysts resulted in the production of germline chimeras, from which tail skin fibroblasts exhibited enhanced PQR. This trait was also recovered in progeny of the chimera. We avoided PQ toxicity, which blocks the ability to involve the germline, by developing a sib-selection method, one that could be widely applied wherever the selection itself might diminish the pluripotency of the ES cells. Thus, phenotype-driven screens in ES cells are both feasible and efficient in producing intact mouse models for in vivo studies.  相似文献   

18.
Summary Antiserum elicited to ornithine decarboxylase (ODC) purified from murine RAW 264 macrophage-like cells has been employed to localize ODC in cultured murine cells. The antiserum immunoprecipitated 100% of the ODC activity from the cultured cells. The specificity of the antiserum was demonstrated by the immunoprecipitation from 35S-methionine metabolically-labeled cell extracts of a single protein which migrated upon SDS-gel electrophoresis coincident with authentic ODC. Indirect immunofluorescence experiments were performed on paraformaldehyde-fixed RAW 264 cells and JB6 epidermal cells using the rabbit anti-ODC antiserum and FITC-conjugated goat anti-rabbit IgG. Little immunofluorescence was apparent in non-stimulated cells. Intense immunofluorescence was detectable in stimulated cells at times of peak cellular ODC activity. Antigenically-reactive ODC was localized diffusely in the cytoplasm and was absent in the nuclei of RAW 264 cells, whereas in the JB6 cells the immunodetectable enzyme protein was localized in a punctate pattern in both the cytoplasm and nucleoplasm and was absent in the nucleolus. The appearance and disappearance of immunoreactive ODC in both cell types after stimulation was consistent with the alterations in ODC activity.  相似文献   

19.
Human alpha-1-antitrypsin (AAT), the most abundant protease inhibitor found in the blood, was expressed in rice embryonic tissue suspension cell culture. This was accomplished by cloning the codon-optimized AAT gene into a vector containing the rice RAmy3D promoter and its signal sequence. The synthetic gene incorporates codons synonymous with those found in highly expressed rice genes. Approximately 1000 stable transformed calli were produced by particle bombardment mediated transformation and were screened for high AAT expression using a porcine elastase inhibitory activity assay. The band shift assay also confirmed that rice-derived AAT is functional regarding its binding capability to the elastase substrate. Time course studies were conducted to determine the optimum, postinduction expression levels from cell culture. AAT expression equivalent to 20% of the total secreted proteins was achieved, and a purification scheme was developed that yielded active AAT with purity greater than 95%. The potential applications of purified plant-derived AAT for treatments of various AAT-deficient diseases are discussed.  相似文献   

20.
Enzymatic assay, electrophoretic immunoblotting and RNA dot-blot techniques were employed to investigate the expression of the ornithine transcarbamylase (OTC) gene in liver and small intestine of Sparse fur mice with abnormal skin and hair (Spf-ash) and Sparse fur mice (Spf) which exhibit an X-linked OTC deficiency. We found a reduced OTC activity in these two tissues. We now show that this reduction is less pronounced in the intestine than in the liver of the Spf-ash strain. During the first 2 weeks of life, the deficiency appears to be less severe than in the adult mice. The enzymatic activity of carbamylphosphate synthetase I (CPS), another enzyme of the urea cycle, is significantly modified in the Spf mutant strain only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号