首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D R Critchley 《Cell》1974,3(2):121-125
Cell surface glycoproteins of normal and virus transformed NIL1 hamster fibroblasts have been labeled by incubation with galactose oxidase followed by reduction with tritiated borohydride. A high molecular weight protein labeled on normal but not transformed cells is the same protein previously detected by lactoperoxidase catalysed iodination.  相似文献   

2.
The surface glycoproteins of the platelet plasma membrane were labeled by oxidation with galactose oxidase followed by reduction with (3H)-sodium borohydride. Of the glycoproteins labeled, only glycoprotein V (apparent molecular weight of 89,000) was decreased as a result of thrombin action. The affected glycoprotein appeared to be completely removed at a concentration of 1 U thrombin per 109 platelets. A soluble glycopeptide hydrolytic product with an apparent molecular weight of 70,000 was released into solution.  相似文献   

3.
The molecular organization of surface galactose residues in glycoproteins of the intact myelin sheath was investigated using the enzymatic membrane probe, galactose oxidase. Rat spinal cords treated under physiological conditions with this nonpermanent probe were labeled specifically in galactose residues by reduction with tritiated sodium borohydride. The enzymatically modified proteins from isolated myelin were analyzed electrophoretically and their specific radioactivities determined. Results indicated tritium label associated with a surprising variety of high molecular weight proteins. The most extensively labeled peak corresponded to the major myelin glycoprotein as indicated by the coincidence of tritium label with that of [14C]fucose used as an internal marker for the glycoproteins. The radioactivity associated with this protein was 1.1 to 2.7 times higher after treatment with galactose oxidase when compared to reduction in the absence of the enzyme and 1.4 to 4.8 times higher when oxidized and reduced after prior treatment with neuraminidase. The results suggest a complex heterogeneity of minor glycoproteins associated with isolated myelin. It is concluded that from this complexity of glycoproteins, a major glycoprotein is at least partially localized on the external surface of either the intact myelin sheath or the closely associated oligodendroglial plasma membrane. Such a localization of this glycoprotein and the probable localization of the other glycoproteins enhances their potential role in specific interactions in the process of mpyelination or myelin maintenance.  相似文献   

4.
New immunochemical reagents consisting of antibodies bound to small latex spheres were used as visual markers for the detection and localization of cell surface antigens by scanning electron microscopy. Cross-linked latex spheres of various sizes from 300 to 3,4000 A in diameter were synthesized by aqueous emulsion copolymerization of methacrylate derivatives containing hydroxyl and carboxyl functional groups. Proteins and other molecules containing primary amino groups were covalently bonded to the acrylic spheres under a variety of mild conditions by the aqueous carbodiimide, cyanogen bromide, and glutaraldehyde methods. For use in the indirect immunochemical-labeling technique, goat antibodies directed against rabbit immunoglobulins were bonded to the spheres. These immunolatex reagents were shown to bind only to cells (red blood and lymphocytes) which had previously been sensitized with rabbit antibodies against cell surface antigens. Mouse spleen lymphocytes with exposed immunoglobulins on their surface (B cells) were labeled with these spheres and distinguished from unlabeled or T lymphocytes by scanning electron microscopy. The distribution of Ig receptors on lymphocytes was also studied using the spheres as visual markers. When lymphocytes were fixed with glutaraldehyde and subsequently labeled with the immunolatex reagents, a random distribution was observed by scanning electron microscopy; a patchy distribution was observed when unfixed lymphocytes were used. These results are consistent with studies using ferritin-labeled antibodies (S. De Petris and M. Raff. 1973. Nature [Lond.]. 241:257.) and support the view that Ig receptors on lymphocytes undergo translational diffusion. In addition to serving as visual markers for scanning electron microscopy, these latex spheres tagged with fluorescent or radioactive molecules have applications as highly sensitive markers for fluorescent microscopy and as reagents for quantitative studies of cell surface antigens and other receptors.  相似文献   

5.
We have examined the band 3 protein(s) of rabbit erythrocyte membranes by a combination of differential extraction and surface labeling methods. Only one major peptide was labeled when intact red cells were exposed to 125I? and lactoperoxidase; this coincided with band 3. When intact cells were exposed to galactose oxidase followed by [3H]borohydride, numerous surface glycoproteins were labeled, one of which clearly coincided with band 3. Differential extraction with lithium diiodosalicylate revealed one major band 3 glycoprotein which contained both the 125I? and 3H surface labels and three peptides which were unlabeled; these three peptides are apparently not exposed at the cell surface.  相似文献   

6.
Summary This review summarizes some recent studies on the surface glycoproteins of human thymocytes and T lymphocytes. Purified cells were surface labeled by the galactose oxidase-NaB3H4 or periodate-NaB3H4 techniques. The radioactive membrane glycoproteins were separated by polyacrylamide slab gel electrophoresis and visualized by fluorography. Thymocytes and T lymphocytes show characteristic surface glycoprotein profiles which are easily distinguishable from those of the other main groups of human leukocytes. We observed specific changes in the surface glycoprotein patterns which correlate with the degree of maturation and functional activation of T cells. Surface molecules carrying T cell specific antigens were identified by immune-precipitation from lysates of surface labeled thymocytes and T lymphocytes using rabbit anti-human T cell antibodies. Finally we describe a leukocyte membrane glycoprotein which is a precursor of serum 1 acid glycoprotein (orosomucoid).  相似文献   

7.
Chick brain synaptosomes or synaptic subfractions were treated with neuraminidase (EC 3.2.1.18) and/or galactose oxidase (EC 1.1.3.9) preparations in which proteolytic activity was inhibited with phenylmethanesulfonyl fluoride followed, after washing, by reductive incorporation of sodium boro[3H]hydride to identify galactose residues exposed on the synaptosomal external surface. Control experiments to demonstrate restriction of labeling to the external surface involved comparing the radioactivity in synaptoplasmic, soluble polypeptides isolated after labeling with labeled, isolated synaptoplasm and examining incorporation into fractions incubated without enzymes. Intactness of the synaptic plasma membrane after labeling was shown by trypsin digestion studies. Polypeptides were separated on sodium dodecyl sulfate polyacrylamide gels and were detected by a liquid scintillation counting procedure. Eleven major radioactive peaks were found after galactose oxidase treatment and reduction of isolated synaptic membranes. When intact synaptosomes were labeled, the same components were detected. When isolated synaptic membranes or intact synaptosomes were treated with neuraminidase before galactose oxidase treatment, three additional components were labeled. These results suggest that (a) chick synaptic membranes have a complex mixture of glycoproteins, (b) all major chick synaptic membrane glycoproteins labeled by galactose oxidase have most or all carbohydrate groups exposed at the exterior surface of the synaptosome, (c) all major, externally-disposed polypeptides of these synaptic membranes are glycoproteins.  相似文献   

8.
Incubation of Rhizobium japonicum with the cultured soybean cell line SB-1, originally derived from the roots of Glycine max, resulted in specific adhesion of the bacteria to the plant cells. This binding interaction appears to be mediated via carbohydrate recognition, since galactose can inhibit the heterotypic adhesion but glucose cannot. Affinity chromatography, on a Sepharose column derivatized with N-caproyl-galactosamine, of the supernatant fraction of a SB-1 cell suspension after enzymatic removal of cell wall yielded a single polypeptide (Mr approximately 30,000) on immunoblotting analysis with rabbit antibodies directed against seed soybean agglutinin. Fluorescently labeled rabbit anti-seed soybean agglutinin also yielded specific immunofluorescent staining on the cell wall and plasma membrane of the SB-1 cells. These results suggest that one likely candidate that may mediate the recognition between the Rhizobium and the soybean cells is the endogenously produced SB-1 lectin. This notion is supported by the observation that rabbit anti-seed soybean agglutinin blocked the Rhizobium-soybean cell adhesion, whereas control antibodies did not.  相似文献   

9.
Summary Five major membrane glycoproteins of the BHK-B4 hamster fibroblast plasma membrane have been identified by binding specific rabbit antibodies to the cell surface and by recovering the detergent solubilized immunocomplexes with Protein A-Sepharose immunoadsorption. These glycoproteins, designated as gp45, gp65, gp95, gp130 and gp140, are exposed at the cell surface since: (i) they were accessible to antibodies in intact viable cells; (ii) they were radioiodinated by the lactoperoxidase-glucose oxidase procedure; and (iii) they were cleaved by proteolytic enzymes in conditions affecting only the cell surface. Among these glycoproteins the gp130 is the predominant component and its exposed portion is characterized by lack of sensitivity to trypsin cleavage. Glycoproteins of different molecular weight, but immunologically related to the major hamster membrane glycoproteins, have been detected at the surface of both rat and mouse fibroblasts.  相似文献   

10.
Epstein-Barr virus-producing cells were used as a model to analyze, with a fracture-immunolabel technique, the distribution, behavior on fracture, and extent of glycosylation of viral transmembrane glycoproteins at the inner nuclear membrane. Surface and fracture immunolabeling with two monoclonal antibodies directed against the carbohydrate or polypeptide portions of the major viral envelope glycoproteins gp350/220 showed the following. (i) The glycoproteins present on the inner and outer nuclear membranes were labeled only with the monoclonal antibody directed against the polypeptide chain, whereas over the surface of virus-producing cells and on mature virions the labeling was dense and uniformly distributed with both monoclonal antibodies. (ii) The glycoproteins were nonuniformly distributed only over the inner nuclear membranes; at the sites of viral budding, the glycoproteins showed a preferential partition with the protoplasmic face. Since fully glycosylated glycoproteins were not present on the nuclear membranes, our observations support the proposed model of herpesvirus maturation. The peculiar distribution and partition on fracture of the envelope glycoproteins on the inner nuclear membrane are similar to those of Sindbis virus envelope glycoproteins on the plasma membrane of infected cells. Therefore, our results suggest that inner nuclear membranes may behave like plasma membranes during viral assembly.  相似文献   

11.
Summary A novel method for immunoenzymatic double staining was developed, using primary antibodies directly labeled with either horseradish peroxidase or alkaline phosphatase. The enzyme-antibody conjugates were applied simultaneously on sections of human tonsil. Intracytoplasmic antigens like immunoglobulins and light chains could easily be detected simultaneously in the same tissue section. With antibodies against cell surface antigens like IgM and T cell antigens areas containing B and T cells could be clearly distinghuished. This method opens the possibility to perform double staining with two monoclonal antibodies.  相似文献   

12.
Asparagine-linked oligosaccharides were liberated from glycoproteins by hydrazinolysis. The treatment resulted in de-N-acetylation of the amino sugars. After isolation of the oligosaccharides free amino groups were labeled with fluorescein isothiocyanate and remaining amino groups reacetylated. The fluorescent oligosaccharides were used to label living cells. They were converted to hydrazine derivatives and covalently attached to cell surface oligosaccharides, which had been treated with periodate or neuraminidase and galactose oxidase. This enabled the visualization of the attached oligosaccharides at the external aspect of the plasma membrane by fluorescence microscopy.  相似文献   

13.
Surface membrane proteins and glycoproteins of procyclic Trypanosoma rhodesiense were labeled with 125I by the use of the insoluble catalyst Iodo-Gen. Autoradiography of whole solubilized procyclic trypanosomes after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a minimum of 25 surface components to have incorporated radioactivity. These components ranged in m.w. from approximately 10,000 to approximately 285,000. Immunoprecipitation with rabbit antisera of Triton X-100 extracts of radiolabeled trypanosomes revealed a subset of at least 14 surface antigens. Two of these antigens (m.w. of 63,000 and 96,000) showed heavy incorporation of label and may be major proteins of the procyclic membrane. Sera from trypanosome-infected mice recognized an overlapping but different subset of surface antigens, including a doublet of very high m.w. Lectin precipitation using antilectin conjugates or bead-bound lectins indicated that many of the labeled surface components are glycoproteins including the two major proteins precipitated by rabbit antisera. Radiolabeled glycoproteins identified by these methods bear alpha-methyl-mannopyranoside and/or galactose residues but not N-acetyl glucosamine or fucose residues in quantity. The use of these methods in identifying potentially pathogenic trypanosomal antigens is suggested.  相似文献   

14.
The surface membrane glycoproteins of normal mouse erythrocytes can be labeled by oxidation with either periodate or galactose oxidase in the presence of neuraminidase, followed by reduction with NaB3H4. Without neuraminidase there is little galactose oxidase-catalyzed labeling of protein. Analysis of labeled proteins by SDS-polyacrylamide gel electrophoresis showed that both methods labeled the same set of glycoproteins. Plasmodium berghei infection dramatically reduced the sialoglycoprotein labeling of red blood cells from infected blood using the periodate/NaB3H4 method. Provided neuraminidase was present, labeling by the galactose oxidase method gave identical results to normal erythrocytes. We conclude that the glycoprotein sialic acid of uninfected as well as infected red cells is modified during infection such that it is refractory to periodate oxidation. Acylation of the exocyclic hydroxyls of sialic acid is suggested to account for this. Lectin binding and cell agglutination experiments using Limulin, soybean and wheatgerm lectins, and concanavalin A confirmed and extended these observations. The possible implications of these results with regard to anemia induced by malaria are briefly discussed.  相似文献   

15.
Purified plasma membranes of rabbit thymocytes are exposed to sodium periodate and galactose oxidase at conditions similar to those used to induce mitogenic transformation of lymphocytes. The membrane proteins are then fractionated by dodecyl sulfate poly-acrylamide gel electrophoresis. At concentrations of 0.005 M, Na IO4 cross-links 55,000 D and 110,000 D glycoproteins which are known to specifically bind concanavalin A. Galactose oxidase has a similar cross-linking effect, but, at the same time causes proteolytic degradation of membrane proteins. Our data indicate that oxidizing agents, like NaIO4 and galactose oxidase, can indeed cross-link receptors of the thymocyte plasma membrane as has often been proposed as a possible mechanism of their action.  相似文献   

16.
Reticulocytosis was induced in rabbits by two methods: phlebotomy and injection of phenylhydrazine. Normal erythrocytes, reticulocytes from bed rabbits, reticulocytes from phenylhydrazine-treated rabbits, and erythrocytes treated in vitro with phenylhydrazine were compared with respect to their plasma membrane labeling by galactose oxidase and NaB3H4, and lactoperoxidase-catalyzed incorporation of 125I. Normal erythrocyte membranes and membranes from reticulocytes of bled rabbits showed almost identical labeling patterns, the presence of 2–3 glycoproteins with moderate to low mobilities on dodecyl sulfate acrylamide gel electrophoresis. Labeling in the absence of enzyme was negligible. In contrast, the reticulocytes from phenylhydrazine-treated rabbits exhibited a large incorporation of tritium without prior treatment with galactose oxidase. Even after prereduction with unlabeled NaBH4 to remove this nonspecific labeling, the labeled glycoprotein components found in normal erythrocytes were not detectable. Normal erythrocytes treated in vitro with phenylhydrazine, washed, and labeled with galactose oxidase had labeling patterns, including high nonspecific incorporation of 3H, similar to those observed with in vivo phenylhydrazine treatment.Solubilization of membranes with lithium diiososalicylate followed by partitioning with phenol showed that the same glycoproteins were presented in normal or phenylhydrazine membranes, although only the former extract was labeled by galactose oxidase. Individual carbohydrates from the membranes were analyzed by gas-liquid chromatography and, in the case of hexosamines, on the amino acid analyzer. The results of these analyses indicated a slight decline in galactose content with phenylhydrazine treatment. Reticulocyte membranes from bled rabbits also showed a decrease in galactose content, although it was less pronounced.Most of the label incorporated by nonspecific borohydride labeling of membranes from phenylhydrazine-treated animals was found associated with protein. The modified amino acids from labeled proteins are similar to those formed in reactions of oxidized lipids and proteins in model systems.  相似文献   

17.
The disaccharide Gal(alpha)1-3Gal is found on more than 45 different molecules on the endothelium of porcine cells and has recently attracted considerable interest, being the major target recognized by xenoreactive antibodies. In this study, the distribution and topology of Gal(alpha)1-3Gal on porcine endothelial cells was examined to access whether some Gal(alpha)1-3Gal-containing molecules might be preferentially recognized by antibodies binding to Gal(alpha)1-3Gal. Thirteen percent of the Gal(alpha)1-3Gal was found on glycolipid and 87% on glycoproteins. Of all the glycoproteins and glycolipids containing Gal(alpha)1-3Gal, two molecules, fibronectin and the integrin beta1 subunit, were most intensely labeled by galactose oxidase, suggesting that these molecules may be preferentially exposed on the apical surface of the endothelium. Binding of anti-Gal(alpha)1-3Gal antibodies to endothelial cell surfaces significantly diminished labeling of fibronectin and the integrin beta1 subunit by galactose oxidase, indicating that these glycoproteins are targets for the antibodies when binding to intact porcine cells.  相似文献   

18.
Glycoproteins in the plasma membrane of rat hepatoma cells were labeled at their externally exposed tyrosine residues with 131I and at their galactose and sialic acid residues with 3H. The degradation of both isotopes in the total cell protein fraction, in glycoproteins purified by concanavalin A, and in glycoproteins separated on two-dimensional gels was determined. Similarly, the total cellular membrane glycoproteins were metabolically labeled with [35S]methionine and [3H]fucose. The fate of both incorporated labels was followed by lectin chromatography or by precipitation of the proteins with specific antibodies followed by electrophoretic gel separation. In both labeling experiments, the carbohydrate markers were lost from the ligand- recognized fraction with similar kinetics as from the total cell protein fraction. In some glycoprotein species which were separated by two-dimensional gel electrophoresis, the polypeptide portion exhibited up to a twofold slower rate of degradation relative to that of the carbohydrate moiety. This difference is most pronounced in carbohydrate- rich glycoproteins. To corroborate this finding, double-labeled membrane glycoproteins were incorporated into reconstituted phospholipid vesicles which were then transferred via fusion into the plasma membrane of mouse fibroblasts. Both the polypeptide and carbohydrate moieties of the transferred membrane glycoproteins were degraded with the same relative kinetics as in the original hepatoma cells. The rate of degradation is mostly a function of the structural properties of the membrane components as shown by the preservation of metabolically stable fucogangliosides of Reuber H-35 hepatoma cells transferred onto the fibroblasts. The technique of insertion of membrane components into the plasma membrane of another cell should assist in the elucidation of the exact route and mechanism of membrane protein destruction.  相似文献   

19.
Cultured rat embryo fibroblasts were first allowed to store for 24 h fluorescein-labeled goat immunoglobulins directed against rabbit immunoglobulins (F anti-R IgG), and were subsequently exposed for 24 h to [(3)H]acetylated rabbit immunoglobulins known to bind to the cell membrane either specifically (anti-plasma membrane IgG: A anti-PM IgG) or unspecifically (contol IgG: AC IgG). As a result of immunological interaction between the two antibodies (no effect was found if the cells had been preloaded with control goat FC IgG), a substantial portion of the stored F anti-R IgG was unloaded from its intracellular storage site, appearing in the medium in the form of soluble immune complexes with rabbit A IgG. Part of the unloaded F anti-R IgG also was recovered in association with the plasma membrane, but only when A anti-PM IgG was used. In addition, significant reverse translocation of AC IgG from plasma membrane to lysosomes or some related intracellular storage compartment was also observed. With A anti-PM IgG, this translocation was less marked and affecte at the same time the plasma membrane marker 5’- nucleotidase. Cells that had stored horseradish peroxidase (HRP) simultaneously with F anti-R IgG did not unload HRP when exposed to A anti-PM IgG. These results support strongly, though not unequivocally, the concept that plasma membrane patches interiorized by endocytosis are recycled, or shuttled, back to the cell surface. In the framework of this concept, recycling antibody-coated membrane is taken to serve as vehicle for the selective intracellular capture and extracellular discharge of immunologically bound F anti-R IgG. The alternative explanation of regurgitation triggered off by immune complexes is considered less likely in view of the lack of HRP unloading.  相似文献   

20.
Glycoproteins of the human erythrocyte membrane were labeled with tritiated sodium borohydride after oxidation of terminal galactosyl and N-acetylgalactosaminyl residues with galactose oxidase. After separation of the polypeptides on polyacrylamide slab gels, a scintillator was introduced into the gel, and the radioactive proteins were visualed by autoradiography (fluorography). The following results were obtained. (a) The erythrocyte membrane contains at least 20 glycoproteins, many of which are minor components. (b) The carbohydrate of all the labeled glycoproteins is exposed only to the outside, since no additional glycoproteins can be labeled in isolated unsealed ghosts. (c) The membrane contains two major groups of glycoproteins. The first group of proteins contains sialic acids linked to the penultimate galactosyl/N-acetylgalactosaminyl residues, which are efficiently labeled only after pretreatment with neuraminidase. The second group has terminal galactosyl/N-acetylgalactosaminyl residues which can be easily labeled without neuraminidase treatment. The glycoproteins from fetal erythrocytes all belong to the first group, whereas only five glycoproteins of erythrocytes from adults belong. (d) Trypsin cleaves the proteins containing sialic acids, and fragments containing carbohydrate remain tightly bound and exposed in the membrane. (e) Pronase cleaves Band 3 in addition to the sialic acid containing glycoproteins, but most of the glycoproteins still remain unmodified in the membrane. (f) No difference is seen between membrane glycoproteins from cells of different ABH blood groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号