首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasoactive intestinal peptide (VIP) receptors have been identified in CNS by their chemical specificity and molecular size. Using synaptosomes isolated from rat cerebral cortex, it was shown that central VIP receptors discriminated among natural and synthetic VIP-related peptides, because half-maximal inhibition of [125I]VIP binding to synaptosomes was obtained for 0.6 nM VIP, 9 nM peptide histidine isoleucineamide (PHI), 50 nM VIP 2-28, 70 nM secretin, 100 nM rat growth hormone-releasing factor (GRF), and 350 nM human GRF. Other peptides of the VIP family, such as glucagon and gastric inhibitory polypeptide, did not interact with cortical VIP receptors. The molecular components of VIP receptors in rat cerebral cortex were identified after [125I]VIP cross-linking to synaptosomes using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of synaptosomal proteins revealed two major [125I]VIP-protein complexes of Mr 49,000 and 18,000. The labeling of the Mr 49,000 component was specific, because it was abolished by native VIP, whereas the labeling of the Mr 18,000 component was not. Natural VIP agonists reduced the labeling of the Mr 49,000 component with the following order of potency: VIP greater than PHI greater than secretin approximately equal to rat GRF. In contrast, glucagon and octapeptide of cholecystokinin were without effect, a result indicating its peptide specificity. Densitometric scanning of autoradiographs showed that the labeling of the Mr 49,000 component was inhibited by low VIP concentrations between 10(-10) and 10(-6) M (IC50 = 0.8 nM), a result indicating the component's high affinity for VIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A method is described for preparing human lung parenchymal membranes essentially free of carbon contamination. Using this technique, a high-affinity 125I-VIP-binding site has been characterised. The receptor density is approx. 200 fmol/mg protein, and the Kd of 125I-VIP by saturation binding is 200 pM. The dissociation kinetics are complex and cannot be described by first-order kinetics. Several VIP-related peptides displace 125I-VIP from this binding site with a rank order of potency: VIP greater than rat GRF greater than PHM greater than PHI greater than human GRF greater than secretin greater than glucagon. Displacement curves of these peptides exhibited slope factors significantly less than unity with the exception of human GRF.  相似文献   

3.
M Huang  O P Rorstad 《Peptides》1990,11(5):1015-1020
Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are homologous neuropeptides with parallel biological actions. These similarities raise the question whether VIP and PHI have common or distinct mechanisms of action, including receptors. The present study attempted to distinguish specific binding sites for VIP and PHI in normal rat tissues using the homologous radioligands [Tyr(125I)10]VIP and [Tyr(125I)10]rat PHI. In rat brain, anterior pituitary, and liver membranes both radioligands identified a VIP-preferring receptor. Rat PHI had less than 10% the binding potency of VIP in these tissues irrespective of which radioligand was used. In rat uterine membranes [Tyr(125I)10]VIP bound to a receptor with approximately 100 times greater affinity for VIP over PHI. No specific binding of [Tyr(125I)10]rat PHI to rat uterus could be demonstrated. In conclusion, these results support the predominance of VIP-preferring receptors as opposed to PHI-preferring receptors in normal rat brain, anterior pituitary, liver and uterus.  相似文献   

4.
GRF (10(-8) - 10(-5) M) is shown to inhibit competitively the binding of [125I]VIP to human and rat intestinal epithelial membranes. The affinity of GRF for VIP receptor is 700-800-times lower than that of VIP in both species. The order of affinity of different peptides is VIP greater than PHI greater than secretin greater than GRF in rat, and VIP greater than GRF greater than PHI greater than secretin in man. The important species specificity of VIP receptors in recognizing PHI and secretin does not occur in the case of GRF. GRF stimulates adenylate cyclase through its interaction with VIP receptors in rat and human membranes. However, while GRF behaves as a VIP agonist in human tissue, it is a partial agonist/antagonist of VIP in the rat.  相似文献   

5.
In human antral membranes, VIP and its natural analogs inhibited the binding of HPLC-purified 125I-VIP, according to the following order of potency: VIP greater than rh GRF greater than helodermin greater than r PHI greater than PHM greater than p PHI greater than hp GRF greater than h, p secretin. No specific binding was detected in plasma membranes purified from the human fundus. In human antral membranes, Scatchard plots were compatible with the existence of two classes of VIP receptors, the first class with high affinity and low binding capacity (Kd = 0.1 nM, Bmax = 10 fmol/mg protein) and another class with a low affinity and higher binding capacity (Kd = 12) nM, Bmax = 1,000 fmol/mg protein). The structure of the VIP receptor in purified plasma membranes prepared from human antral glands and from the HGT-1 human gastric cancer cells was subsequently probed using the cross-linking reagent DSP and 125I-VIP. In agreement with the pharmacological study and the Scatchard analysis of the binding data, SDS gel electrophoresis of the solubilized receptor identified two radiolabeled peptides Mr 67,000 and 34,000 containing disulfide bonds. According to its sensitivity to low doses of VIP and to GTP, the Mr 67,000 binding site represents the membrane domains involved in the physiologial regulation of adenylate cyclase by VIP in normal and transformed human gastric epithelia.  相似文献   

6.
A new type of VIP receptor was characterized in human SUP-T1 lymphoblasts. The order of potency of unlabeled peptides, in the presence of [125I]helodermin, was: helodermin(1-35)-NH2 = helodermin(1-27)-NH2 greater than helospectin greater than VIP = PHI greater than [D-Ser2]VIP greater than [D-Asp3]VIP greater than [D-His1]VIP greater than or equal to [D-Ala4]VIP greater than or equal to secretin = GRF. This specificity was distinct from that of all VIP receptors described so far in that: (i) the affinity for helodermin (Kd = 3 nM) was higher than that of VIP (Kd = 15 nM) and PHI (Kd = 20 nM); and (ii) position 4 played an important role in ligand binding. The labeled sites were likely to be functional receptors as adenylate cyclase in crude lymphoblastic membranes (200-10,000 x g pellets) was stimulated by peptides, in the presence of GTP, with the following order of potency: helodermin(1-35)-NH2 greater than helodermin(1-27)-NH2 greater than helospectin = VIP = PHI.  相似文献   

7.
The iodination of vasoactive intestinal peptide (VIP) was studied, using a variety of enzymatic and chemical iodination methods. Reversed phase high performance liquid chromatography (HPLC) was used to purify the reaction products. The lactoperoxidase-glucose oxidase method gave excellent results in terms of reproducibility, iodine incorporation, and yield of the non-oxidized products [Tyr(I)10]VIP and [Tyr(I)22]VIP, and was used to prepare both 125I and 127I labelled derivatives. In both cases, direct application to HPLC and a single column system were used. Although the oxidized peptides [Tyr(I)10,Met(O)17]VIP and [Tyr(I)22,Met(O)17]VIP could be generated to varying degrees directly by iodination of VIP, these were most conveniently prepared by iodination of [Met(O)17]VIP. Iodinated derivatives of the homologous peptides PHI and PHM were likewise prepared by rapid, one-step HPLC procedures. The site and degree of iodination were determined by HPLC peptide mapping of tryptic digests and amino acid analyses, and in the case of [Tyr(I)10]VIP also by sequencing. The vasorelaxant activities of the iodinated peptides in bovine cerebral artery preparations did not differ significantly from those of the corresponding noniodinated peptides, with the exception of [Tyr(I)10,Met(O)17]VIP and [Tyr(I)22,Met(O)17]VIP which, unlike [Met(O)17]VIP itself, had slightly lower potency than VIP.  相似文献   

8.
We have studied the responsiveness of vascular adenylate cyclase to vasoactive intestinal peptide (VIP) and parathyroid hormone (PTH) using preparations of cerebral microvessels and arteries. Cerebral microvessels obtained from rats, guinea-pigs, cattle, and pigs all responded potently to bovine (b) PTH-(1-34), whereas considerable between-species variability was observed in the responsiveness to VIP. The homologous peptide to VIP, PHI (porcine heptacosapeptide), stimulated adenylate cyclase in both rat microvessels and a broken-cell preparation of bovine arteries. The ED50 values for activation of bovine arterial adenylate cyclase by VIP, PHI, and bPTH-(1-34) were 6.9 nM, 10 nM, and 100 nM, respectively, with the following order of efficacy: VIP = PHI greater than bPTH-(1-34). The other related peptides, hpGRF (human pancreatic growth hormone releasing factor), secretin, and glucagon, and the fragment VIP-(10-28) were inactive. The PTH antagonist, [Nle8, Nle18, Tyr34]bPTH-(3-34) amide, inhibited bPTH-(1-34) activation of vascular adenylate cyclase but did not affect activation by VIP using either microvessels or arteries. VIP or PHI demonstrated an additive effect with bPTH-(1-34) on vascular adenylate cyclase activity. However, the effects of VIP and PHI were nonadditive with each other. These data suggest that VIP and bPTH-(1-34) activate cerebral vascular adenylate cyclase by interacting with pharmacologically distinct receptors, whereas PHI and VIP likely interact with a common receptor.  相似文献   

9.
M Huang  H Itoh  K Lederis  O Rorstad 《Peptides》1989,10(5):993-1001
Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are homologous neuropeptides which share vasodilatory properties. This paper addresses the question of whether PHI exerts its vascular action via a receptor distinct from that for VIP. Radioligand binding experiments were done using [Tyr(125I)10]VIP, [Tyr(125I)22]porcine PHI, [Tyr(125I)10]rat PHI and arterial preparations from rat, bovine and porcine species. The radioiodination of rat PHI by the lactoperoxidase-glucose oxidase method and analysis of the structure of the major radiolabeled derivatives were described. All the receptor binding experiments identified a VIP-preferring receptor irrespective of which radioligand or arterial preparation was utilized. VIP and PHI peptides demonstrated cross-desensitization in studies of relaxation of porcine coronary arterial strips in vitro. The present results favor the conclusion that the vascular actions of the PHI peptides are best explained by binding to a VIP-preferring receptor.  相似文献   

10.
The presence of receptors, recognized by vasoactive intestinal peptide (VIP) as well as by PHI (a peptide with N-terminal histidine and C-terminal isoleucine amide), was documented in lung membranes from rat, mouse, guinea pig and man by the ability of these receptors, once occupied, to stimulate adenylate cyclase. In lung membranes from rat, mouse and guinea pig, the capacity of VIP, PHI and secretin to stimulate the enzyme and the potency of the same peptides to compete with 125I-VIP for binding to VIP receptors were similar, the affinity decreasing in the order: VIP greater than PHI greater than secretin. In addition, dose-effect curves were compatible with the coexistence of high-affinity and low-affinity VIP receptors, in the four animal species considered. If PHI was able to recognize all VIP receptors it could not, however, discriminate the subclasses of VIP receptors.  相似文献   

11.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 +/- 0.3 nM and a Bmax of 1.20 +/- 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP greater than helodermin greater than rat GRF greater than rat PHI greater than secretin greater than human GRF. GTP inhibited 125I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insentive, G protein-free form. This represents a major advance towards the purification of VIP receptors.  相似文献   

12.
125I-VIP bound specifically to sites on human, rat, guinea pig, and rabbit lung membranes with a dissociation constant (KD) of 60-200 pM and binding site maxima of 200-800 fmol/mg of protein. The presence of a second lower affinity site was detected but not investigated further. High affinity 125I-VIP binding was reversible and displaced by structurally related peptides with an order of potency: VIP greater than rGRF greater than PHI greater than hGRF greater than secretin = Ac Tyr1 D Phe2 GRF. 125I-VIP has been covalently incorporated into lung membranes using disuccinimidyl suberate. Sodium dodecyl sulfate-polyacrilamide gel electrophoresis of labeled human, rat, and rabbit lung membranes revealed major 125I-VIP-receptor complexes of: Mr = 65,000, 56,000, and 64,000 daltons, respectively. Guinea pig lung membranes exhibited two 125I-VIP-receptor complexes of Mr = 66,000 and 60,000 daltons. This labeling pattern probably reflects the presence of differentially glycosylated forms of the same receptor since treatment with neuroaminidase resulted in a single homogeneous band (Mr = 57,000 daltons). Soluble covalently labeled VIP receptors from guinea pig and human lung bound to and were specifically eluted from agarose-linked wheat germ agglutinin columns. Our studies indicate that mammalian lung VIP receptors are glycoproteins containing terminal sialic acid residues.  相似文献   

13.
T Agui  K Matsumoto 《Peptides》1990,11(3):609-611
The vasoactive intestinal peptide (VIP) receptors were identified on the membranes from the rat anterior pituitary gland with [125I]VIP. The dissociation constant (Kd) and the maximal binding capacity (Bmax) values were estimated from the competitive inhibition data. The Kd and Bmax values were 1.05 +/- 0.75 nM and 103 +/- 11 fmol/mg protein, respectively. The order of molar potency of related peptides to inhibit [125I]VIP binding was VIP greater than peptide histidine isoleucine (PHI) greater than secretin greater than glucagon. Glucagon was not effective to inhibit the binding. [125I]VIP binding was effectively inhibited by the addition of guanine nucleotides. The order of molar potency to inhibit the binding was Gpp(NH)p greater than GTP greater than GDP greater than GMP greater than ATP. These results directly suggest the coupling of VIP receptors with guanine nucleotide binding proteins in the anterior pituitary gland.  相似文献   

14.
[Acetyl-His1]VIP stimulated adenylate cyclase with higher potency than VIP in membranes from human SUP-T1 lymphoblasts and was used as an efficient radioiodinated ligand with low non-specific binding to evaluate the relationship between receptor occupancy and adenylate cyclase activation and the possible interference of peptide T (an epitope derived from HIV envelope protein gp120). Various peptides inhibited [125I-acetyl-His1]VIP binding and activated the enzyme, their order of potency being: helodermin greater than [acetyl-His1]VIP greater than VIP = PHI = [Phe1]VIP greater than [D-Phe2]VIP = [D-Ala4]VIP = [D-Phe4]PHI greater than or equal to [D-Phe4]VIP greater than [D-His1]VIP giving further support for the existence of a novel subtype of helodermin/VIP receptors. [D-Ala1]peptide T and VIP-(10-28) did not recognize the binding site and did not inhibit, even at high concentration, VIP - or VIP analogue - stimulated adenylate cyclase activities.  相似文献   

15.
M Huang  O P Rorstad 《Peptides》1987,8(3):477-485
Using a biologically active radioligand, [Tyr(125I)10]VIP, we have identified and characterized receptors for vasoactive intestinal peptide (VIP) on membranes prepared from the rat superior mesenteric artery and bovine coronary arteries. Binding was specific, saturable, reversible and dependent on time and temperature. Scatchard analysis suggested the presence of a high and a low affinity binding site in each arterial system with the following binding constants: the rat mesenteric artery, KD = 0.22 +/- 0.02 and 13.6 +/- 7.8 nM (corresponding maximum number of binding sites, RO = 606 +/- 44 fmol/mg protein and 2.1 +/- 0.2 pmol/mg protein); bovine circumflex coronary artery, KD = 0.10 +/- 0.01 and 37.8 +/- 16.1 nM (corresponding RO = 369 +/- 65 fmol/mg protein and 2.0 +/- 0.7 pmol/mg protein); bovine left and right descending coronary arteries, KD = 0.12 +/- 0.03 and 21.3 +/- 6.4 nM (corresponding RO = 472 +/- 7 fmol/mg protein and 2.2 +/- 0.3 pmol/mg protein). The arterial VIP receptors did not recognize secretin, glucagon, apamin or bovine parathyroid hormone, and had reduced affinity for PHI, PHM and growth hormone releasing factors (GRF). These recognition properties were, by and large, similar to those seen in the bovine cerebral arteries although a between-species heterogeneity of recognition function could be deduced from the differences in the competitive binding of rat and bovine vascular VIP receptors with the corresponding species-specific GRFs.  相似文献   

16.
Secretin Stimulates Cyclic AMP Formation in the Rat Brain   总被引:2,自引:0,他引:2  
The effects of secretin on cyclic AMP levels in the rat brain were determined. Incubation of rat brain frontal cortex slices with secretin or the structurally related peptides peptide histidine leucine (PHI) or vasoactive intestinal polypeptide (VIP) in the presence of 10 mM theophylline resulted in a dose-dependent increase in the cyclic AMP levels. The half-maximal increase in cyclic AMP occurred using a 1 microM dose of secretin or a 2 microM dose of PHI or VIP. Preincubation of slices with secretin-(5-27) produced a dose-dependent inhibition of the secretin but not VIP- or PHI-stimulated increase in the cyclic AMP content. Also, in receptor binding studies, secretin-(5-27) produced a dose-dependent inhibition (Ki = 400 nM) of 125I-secretin but not of 125I-VIP binding to rat brain membranes. Guanyl-5'-yl imidodiphosphate decreased the affinity of radiolabelled secretin binding as a result of an increased rate of dissociation of bound 125I-secretin. These data suggest that secretin receptors in the rat brain may be coupled to adenylate cyclase in a stimulatory manner and that secretin-(5-27) may function as a central secretin receptor antagonist.  相似文献   

17.
Bovine t hymic peptide extract (1–100 g/ml) is shown to completely inhibit the binding of [125I]VIP to rat blood mononuclear cells, lymphoid cells of spleen, and liver plasma membranes. In the three models, the bovine thymic peptide extract inhibits [125I]VIP binding with a potency that is 4000–7000 times lower than that of the native VIP, on a weight basis. In rat liver plasma membranes, the bovine thymic peptide extract stimulates adenylate cyclase with a maximal efficiency that is similar to that of VIP. At maximal doses, VIP and thymic peptide extract do not exert an additive effect on adenylate cyclase, suggesting that the activation of the enzyme by the bovine thymic peptide extract occurs through VIP receptors. Finally, no VIP-like immunoreactivity was detected in the thymic peptide extract using an antiserum raised against mammalian VIP. All these data suggest the presence in the bovine thymic peptide extract of a new substance which behaves as a VIP agonist in rat.  相似文献   

18.
PHM, the human counterpart of porcine Peptide Histidine Isoleucine amide (PHI), is shown to be a VIP agonist with low potency on human VIP receptors located in colonic epithelial cell membranes. Its potency is identical to that of PHI but by 3 orders of magnitude lower than that of VIP itself in inhibiting 125I-VIP binding and in stimulating adenylate cyclase activity. This contrasts markedly with the behaviour of PHI on rat VIP receptors located in intestinal epithelial cell membranes where PHI is a potent agonist with a potency that is 1/5 that of VIP. In another connection, we show that 24-glutamine PHI has the same affinity as 24-glutamic acid PHI (the natural peptide) for rat or human VIP receptors. These results indicate that while PHI may exert some physiological function through its interaction with VIP receptors in rodents, its human counterpart PHM is a very poor agonist of VIP in human. Furthermore, they show that the drastic change in position 24 of PHI (neutral versus acid residue) does not affect the activity of PHI, at least on VIP receptors.  相似文献   

19.
Helodermin, a newly isolated peptide from the venom of Gila monster (Heloderma suspectum) was shown to stimulate the adenylate cyclase activity of rat pancreatic membranes as efficiently as secretin and VIP. It also increased cyclic AMP levels and inhibited [125I]VIP binding in rat pancreatic acini. Finally, helodermin activated adenylate cyclase in membranes from rat heart, rat brain, and human heart, showing properties analogous yet distinct from those of secretin, VIP and PHI.  相似文献   

20.
Vasoactive intestinal peptide (VIP) bound with high affinity (Kd 0.13 nmol/l) to receptors on the human glioma cell line U-343 MG Cl 2:6. The receptors bound the related peptides helodermin. PHM and secretin with 10, 400 and 5000 times lower affinity, respectively. Deamidated VIP (VIP-COOH) and [des-His1]VIP bound with 10 and 100 times lower affinity. The fragment VIP(7–28) displaced 25% of the receptor-bound 125I-VIP whereas VIP(16–28) and VIP(1–22-NH2) were inactive. The binding of 125I-VIP could be completely inhibited by 10 μmol/l of the antagonists [N-Ac-Tyr1,D-Phe2]GRF(1–29)-NH2, [pCl-D-Phe6,Leu17]VIP and VIP(10–28); in contrast, the antagonist L-8-K was inactive. Affinity labeling showed that VIP bound to proteins with Mr's of 75 kDa, 66 kDa and 50 kDa, respectively. Following binding, the peptide was rapidly internalized, and at steady-state only 20% of cell-associated 125I-VIP was bound to receptors on the cell surface. The internalized 125I-VIP was completely degraded to 125I-tyrosine which was released from the cells. Degradation of internalized 125I-VIP was significantly reduced by chloroquine phenantroline and pepstatin-A. Surface binding and internalization of 125I-VIP was increased 3 times by phenantroline, and pepstatin-A caused a 5 times increase in surface binding. Chloroquine reduced surface-bound 125I-VIP, but caused retention of internalized 125I-VIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号