首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Controlled layer-by-layer immobilization of horseradish peroxidase.   总被引:2,自引:0,他引:2  
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzyme's activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme.  相似文献   

2.
Preparation of Concanavalin A-adsorbents by immobilization on Sepharose activated with 1-cyano-4-(dimethylamino)-pyridinium tetrafluoroborate (CDAP-reagent) is reported. High immobilization yields of lectin (above 90%) were attained using an optimized CDAP-activating protocol. The effect of ligand density on the performance of the adsorbent for specific binding of glycoproteins was studied using horseradish peroxidase (HRP) as a model. Adsorption yields of pure HRP exceeding 90% were obtained with Con A-derivatives containing not < 20 mg of immobilized Con A/ml of packed gel. With lectin content of 2 mg/(ml of packed gel), only 20% of HRP was adsorbed. Purification of peroxidase from horseradish roots extract was successfully accomplished on Con A-Sepharose with high Con A content.  相似文献   

3.
Glucose oxidase (GOD), horseradish peroxidase (HRP), and lactate oxidase (LOD) were covalently immobilized on special NH(2)-functionalized glass and on a novel NH(2)-cellulose film via 13 different coupling reagents. The properties of these immobilized enzymes, such as activity, storage stability, and thermostability, are strongly dependent on the coupling reagent. For example, GOD immobilized by cyanuric chloride on the NH(2)-cellulose film loses approximately half of its immobilized activity after 30 days of storage at 4 degrees C or after treatment at 65 degrees C for 30 min. In contrast, GOD immobilized by L-ascorbic acid onto the same NH(2)-cellulose film retains 90% of its initial activity after 1 year of storage at 4 degrees C and 92% after heat treatment at 65 degrees C for 30 min. Unlike GOD, in the case of LOD only immobilization on special NH(2)-functionalized glass, e.g., via cyanuric chloride, led to a stabilization of the enzyme activity in comparison to the native enzyme. The operational stability of immobilized HRP was up to 40 times higher than that of the native enzyme if coupling to the new NH(2)-cellulose film led to an amide or sulfonamide bond. Regarding the kinetics of the immobilized enzymes, the coupling reagent plays a minor role for the enzyme substrate affinity, which is characterized by the apparent Michaelis constant (K(M,app)). The NH(2)-functionalized support material as well as the immobilized density of the protein and/or immobilized activity has a strong influence on the K(M,app) value. In all cases, K(M,app) decreases with increasing immobilized enzyme protein density and particularly drastically for GOD.  相似文献   

4.
On the basis of their versatile structure and chemistry as well as tunable mechanical properties, polymer brushes are well-suited as supports for enzyme immobilization. However, a robust surface design is hindered by an inadequate understanding of the impact on activity from the coupling motif and enzyme distribution within the brush. Herein, horseradish peroxidase C (HRP C, 44 kDa), chosen as a model enzyme, was immobilized covalently through its lysine residues on a N-hydroxysuccinimidyl carbonate-activated poly(2-hydroxyethyl methacrylate) (PHEMA) brush grafted chemically onto a flat impenetrable surface. Up to a monolayer coverage of HRP C is achieved, where most of the HRP C resides at or near the brush-air interface. Molecular modeling shows that lysines 232 and 241 are the most probable binding sites, leading to an orientation of the immobilized HRP C that does not block the active pocket of the enzyme. Michaelis-Menten kinetics of the immobilized HRP C indicated little change in the K(m) (Michaelis constant) but a large decrease in the V(max) (maximum substrate conversion rate) and a correspondingly large decrease in the k(cat) (overall catalytic rate). This indicates a loss in the percentage of active enzymes. Given the relatively ideal geometry of the HRPC-PHEMA brush, the loss of activity is most likely due to structural changes in the enzyme arising from either secondary constraints imposed by the connectivity of the N-hydroxysuccinimidyl carbonate linking moiety or nonspecific interactions between HRP C and DSC-PHEMA. Therefore, a general enzyme-brush coupling motif must optimize reactive group density to balance binding with neutrality of surroundings.  相似文献   

5.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

6.
Horseradish peroxidase (HRP) and soybean peroxidase (SBP) were covalently immobilized onto aldehyde glass through their amine groups. The activity yield and the protein content for the immobilized SBP were higher than for the immobilized HRP. When free and immobilized peroxidases were tested for their ability to remove 4-chlorophenol from aqueous solutions, the removal percentages were higher with immobilized HRP than with free HRP, whereas immobilized SBP needs more enzyme to reach the same conversion than free enzyme. In the present paper the two immobilized derivatives are compared. It was found that at an immobilized enzyme concentration in the reactor of 15 mg l(-1), SBP removed 5% more of 4-chlorophenol than HRP, and that a shorter treatment was necessary. Since immobilized SBP was less susceptible to inactivation than HRP and provided higher 4-chlorophenol elimination, this derivative was chosen for further inactivation studies. The protective effect of the immobilization against the enzyme inactivation by hydrogen peroxide was demonstrated.  相似文献   

7.
M R Bonen  S A Hoffman  A A García 《BioTechniques》2001,30(6):1340-4, 1346-51
Microplate wells can be coated with silver ions using glutaraldehyde as a spacer molecule and thiourea as a complexing ligand. Microwells containing surface silver ions are shown to immobilize biotin-labeled horseradish peroxidase (HRP) in active form, while showing very little affinity for the unlabeled enzyme. These plates can also immobilize biotin-labeled antibodies that exhibit bioactivity after immobilization. Silver ions are needed for the complexation of the biotinylated enzyme or antibody because microwells modified to contain surface amine or thiourea molecules do not immobilize appreciable amounts of the labeled proteins. A maximum surface coverage for biotin-labeled HRP of 40 ng/cm2 and an immobilization binding constant of Km = 8 x 10(9)/M are determined from serial dilutions in a microplate. Detection of as little as 6.7 fmol HRP is achieved using antibodies immobilized on the silver ion-modified microplates. Active antibody surface densities were estimated to be between 130 and 260 nm2/antibody molecule. Background binding of HRP to the modified silver ion microplates was very low, allowing for reasonably accurate detection between 10(-14) and 10(-11) mol HRP.  相似文献   

8.
Carbon nanomaterials have emerged as suitable supports for enzyme immobilization and stabilization due to their inherently large surface area, high electrical conductivity, chemical stability, and mechanical strength. In this paper, carbon nano-onions (CNOs) were used as supports to immobilize alkaline phosphatase, horseradish peroxidase, and glucose oxidase. CNOs were first functionalized by oxidation to generate carboxylic groups on the surface followed by the covalent linking of using a soluble carbodiimide as coupling agent. The CNO–enzyme conjugates were characterized by transmission electron microscopy and Raman spectroscopy. Thermogravimetric analysis revealed a specific enzyme load of ~0.5?mg of protein per milligram of CNO. The immobilized enzymes showed enhanced storage stability without altering the optimum pH and temperatures. These properties make the prepared nanobiocatalyst of potential interest in biosensing and other biotechnological applications.  相似文献   

9.
Having been activated with glutaraldehyde, modified poly(ethylene terephthalate) grafted acrylamide fiber was used for the immobilization of horseradish peroxidase (HRP). Both the free HRP and the immobilized HRP were characterized by determining the activity profile as a function of pH, temperature, thermal stability, effect of organic solvent and storage stability. The optimum pH values of the enzyme activity were found as 8 and 7 for the free HRP and the immobilized HRP respectively. The temperature profile of the free HRP and the immobilized HRP revealed a similar behaviour, although the immobilized HRP exhibited higher relative activity in the range from 50 to 60 °C. The immobilized HRP showed higher storage stability than the free HRP.  相似文献   

10.
Yang M  Yang Y  Yang Y  Shen G  Yu R 《Analytical biochemistry》2004,334(1):127-134
An amperometric enzyme biosensor for the determination of choline utilizing two enzymes, choline oxidase (CHOD) and horseradish peroxidase (HRP), is described. The biosensor consisted of CHOD cross-linked onto a HRP-immobilized carbon paste electrode. The biosensor was prepared by in situ electropolymerization of poly(thionine) within a carbon paste containing the enzyme HRP and thionine monomer and then CHOD was immobilized by using chitosan film through cross-linking with glutaraldehyde. The in situ electrogenerated poly(thionine) displays excellent electron transform efficiency between the enzyme HRP and the electrode surface, and the polymer enables improvement in enzyme immobilization within the paste. Several parameters such as the amount of thionine and enzyme, the applied potential, the pH, etc. have been studied. Amperometric detection of choline was realized at an applied potential of -0.2V vs saturated calomel electrode in 1/15M phosphate buffer solution (pH 7.4) with a linear response range between 5.0 x 10(-6) and 6.0 x 10(-4)M choline and a response time of 15s. When applied to the analysis of phosphatidylcholine in serum samples, a 0.997 correlation was obtained between the biosensor results and those obtained by a hospital method.  相似文献   

11.
“构象记忆”的辣根过氧化物酶的微水相共价固定化   总被引:1,自引:0,他引:1  
本研究利用酶在微水溶剂中的"构象记忆"特性,以壳聚糖微球为载体,以辣根过氧化物酶(Horseradish peroxidase,HRP)为研究对象,将HRP于活性构象下冻干"固定"后,在二氧六环:水=99:1(V/V)微水介质中与载体进行共价交联,同时与传统水介质中共价交联固定化的HRP进行比较。结果发现,两种介质中固定化HRP的最适温度都提高到60°C,最适pH均为6.5,而微水相中固定的酶活力损失较低,酶活比传统水相中固定的酶高6倍以上;70°C保温30min后,微水相中固定的酶保留75.42%的活力,而水相中固定的HRP仅存15.4%的活力;微水相中固定的HRP具有更好的操作稳定性和热稳定性,60°C下连续操作5次之后,微水相固定的HRP保留77.69%的酶活,而水相固定的HRP仅存16.67%的酶活;微水相中固定的HRP在苯酚的去除中表现得更具优势;微水相中共价交联制备的CS-HRP-SWCNTs/Au酶修饰电极对H2O2的响应信号比水相中共价固定的酶电极强2.5倍,灵敏度更高。本研究表明利用酶的"构象记忆"在微水介质中进行共价交联是固定化酶的一种可行方法,所制备的固定化酶具有更优良的性质。  相似文献   

12.
A methylene blue-mediated enzyme biosensor has been developed for the detection of inhibitors including mercury(II), mercury(I), methylmercury, and mercury-glutathione complex. The inhibition to horseradish peroxidase was apparently reversible and noncompetitive in the presence of HgCl2 in less than 8 s and irreversibly inactivated when incubated with different concentrations of HgCl2 for 1-8 min. The binding site of horseradish peroxidase with HgCl2 probably was a cysteine residue SH. Mercury compounds can be assayed amperometrically with the detection limits 0.1 ng ml(-1) Hg for HgCl2 and methylmercury, 0.2 ng ml(-1) Hg for Hg2(NO3)2 and 1.7 ng ml(-1) Hg for mercury glutathione complex. Inactivation of the immobilized horseradish peroxidase was displayed in the AFM images of the enzyme membranes.  相似文献   

13.
BSA和PEG可以有效地提高固定化辣根过氧化物酶(HRP)在有机相中的活力。固定化酶活力的提高与试剂加入的顺序有密切的联系;不同载体对酶的影响不同,Gelite,alumina,XAD-7,Kiselgel和Florisil为载体,分别以吸附法制备固定化酶。实验表明固定化过程中保护剂和酶的加入顺序与国家化酶活力密切相关,而这些载体的固定化效果又以Celite最佳,Florisil最差。Floris  相似文献   

14.
Antigens immobilized on solid supports may be used to detect or purify their corresponding antibodies (Ab) from serum. Direct immobilization of antigens on support surfaces (through short spacer arms) may promote interesting stabilizing effects on the immobilized antigen. However, the proximity of the support may prevent the interaction of some fractions of polyclonal Ab with some regions of the antigen (those placed in close contact with the support surface). Horseradish peroxidase (HRP) was immobilized on agarose by different protocols of multipoint covalent immobilization involving different regions of the antigen surface. Glyoxyl-agarose, BrCN-agarose, and glutaraldehyde-agarose were used as activated supports. Each HRP-immobilized preparation was much more stable than the soluble enzyme, but it was only able to adsorb up to 60-70% of a mixture of polyclonal anti-HRP antibodies. On the other hand, HRP was also immobilized on agarose through a very long, flexible, and hydrophilic spacer arm (dextran). This immobilized HRP was hardly stabilized, but it was able to adsorb 100% of the polyclonal anti-HRP. The absence of steric hindrances seems to play a critical role favoring the complete recognition of all classes of polyclonal Ab. Another solution to achieve a complete adsorption of polyclonal Ab on immobilized-stabilized antigens has been also reached by using a mixture of the differently immobilized and stabilized HRP-agarose preparations. In this case, an improved storage and operational stabilities of the immobilized antigens can be combined with the complete adsorption of any class of antibody.  相似文献   

15.
In this paper, we describe a method for immobilizing proteins and synthesizing peptides in micrometer-dimension patterns on solid supports. Microelectronics fabrication technology was adapted and used to lithographically direct the location of immobilization of proteins on appropriately derivatized surfaces. As examples, we micropatterned the protein bovine serum albumin (BSA) and the enzyme horseradish peroxidase (HRP). The catalytic activity of HRP was shown to be retained after being cross-linked to the support. When coupled with solid-phase peptide synthesis, the technique allowed synthetic peptides to be constructed in patterns again having micrometer dimensions. Synthetic polypeptides, polylysine, were constructed in patterns with dimensions that approached the practical limit of resolution for optical lithography at 1-2 microns. The patterns of immobilized molecules and synthetic peptides were visualized using histochemical methods together with light and fluorescence microscopy. The protein and peptide patterning technique described here is an advance in the field of bioelectronics. In particular, it should now be possible to devise novel methods for interfacing with biological systems and constructing new devices for incorporation into miniaturized biosensors.  相似文献   

16.
A new immobilization method for immunoaffinity (IA) biosensors that ensures the high surface density and the stability of the IA layer was developed. For the immobilization of biomolecules, the molecular recognition protein was first thiolated by covalent conjugation of mercaptopropionic acid, and then the thiolated protein was attached on the gold surface of the transducer. In this work, horseradish peroxidase (HRP) and its antibody were used as a model antigen-antibody, and the following properties of the IA layer prepared by thiolated protein were estimated: (i) biological integrity of HRP after the immobilization process by using activity assay, (ii) charge transfer resistance by immobilization, (iii) mass loading by the surface plasmon resonance (SPR) biosensor, (iv) number of binding sites, and (v) feasibility test for the measurement of capacitive change by the antigen-antibody interaction. Based on these parameters, the immobilization method by using thiolated protein was determined to be feasible for application to IA biosensors.  相似文献   

17.
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate gel matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O2 and H2O2, which is superior to that immobilized in silica sol-gel film.  相似文献   

18.
The immobilization of horseradish peroxidase by covalent coupling within an expanded poly(acryloyl morpholine) gel network is described. The activity of the immobilized horseradish peroxidase was compared with that of the native enzyme in aqueous buffer and in buffered mixtures of dimethyl-formamide/water, ethanediol/water, methanol/water and tetrahydrofuran/water of varying solvent ratios at pH 6.1. On increasing the organic solvent concentration in the substrate solution, active immobilized enzyme retained its activity much better than an equivalent amount of the native enzyme. The oxidation of ferrocene (water-insoluble) and ferrocene derivatives to the corresponding ferricinium ions, was accomplished efficiently by the immobilized enzyme in buffered 50% methanol/water solution. The immobilized enzyme exhibited superior resistance to thermal denaturation.  相似文献   

19.
Positively charged Ni-Al layered double hydroxide nanosheets (Ni-Al LDHNS) have been used for the first time as matrices for immobilization of horseradish peroxidase (HRP) in order to fabricate enzyme electrodes for the purpose of studying direct electron transfer between the redox centers of proteins and underlying electrodes. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) revealed that the HRP-Ni-Al LDHNS film had an ordered structure and that HRP was intercalated into Ni-Al LDHNS with a monolayer arrangement. Field emission scanning electron microscopy (FESEM) showed that the HRP-Ni-Al LDHNS film had a uniform, porous morphology. UV-vis spectroscopy indicated that the intercalated HRP retained its native structure after incorporation in the Ni-Al LDHNS film. The immobilized HRP in Ni-Al LDHNS on the surface of a glassy carbon electrode (GCE) exhibited good direct electrochemical and electrocatalytic responses to the reduction of hydrogen peroxide (H(2)O(2)) and trichloroacetic acid (TCA). The resulting H(2)O(2) biosensor showed a wide linear range from 6.00x10(-7)M to 1.92x10(-4)M, low detection limit (4.00x10(-7)M) and good stability. The results show that Ni-Al LDHNS provide a novel and efficient platform for the immobilization of enzymes and realizing direct electrochemistry and that the materials have potential applications in the fabrication of third-generation biosensors.  相似文献   

20.
Silicatein from Suberites domuncula was known to catalyze silica deposition in vitro under near neutral pH and ambient temperature conditions. In this study, we employed GST–glutathione (GSH) interaction system to increase the production of silicatein and develop an efficient protein immobilization method. Recombinant silicatein fused with GST (GST-SIL) was produced in E. coli and the GST-SIL protein was employed on GSH-coated glass plate. GST-SIL bound surface or matrix can catalyze the formation of silica layer in the presence of tetraethyl orthosilicate as a substrate at an ambient temperature and neutral pH. During silicatein-mediated silicification, green fluorescent protein (GFP) or horseradish peroxidase (HRP) can be efficiently immobilized on the silica surface. Immobilized GFP or HRP retained their activity and were released gradually. This biocompatible silica coating technique can be employed to prepare biomolecule-immobilized surfaces or matrixes, which are useful for the development of biocatalytic, diagnostic and biosensing system, or tissue culture scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号