首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell-free extracts of the slime mold Dictyostelium discoideum were assayed for phosphorylating activity towards endogenous proteins and towards histone H1, casein and myelin basic protein (MBP). During development, protein kinase activity towards all of these substrates steadily increased and peaked between the aggregation and the pseudoplasmodial stages. Particulate-associated kinase activity was solubilized with 1% CHAPS, and separated into 300–400 kDa and ∼ 100 kDa components on Sephacryl S-300. The 300–400 kDa peak exhibited the most pronounced developmental increase in MBP phosphorylating activity. It was further fractionated on DEAE-Sephacel and heparin-Sepharose, and in each case, it coeluted with the histone H1 phosphorylating activity. The activity of this kinase was unaffected by cAMP and calmodulin, but it was reduced to 50% by ∼ 350 mM NaCl, 5 mM NaF and 40 μg polylysine/ml. The ∼ 100 kDa peak exhibited the most pronounced increase in casein kinase activity during development. Most of the casein phosphorylating activity did not bind to DEAE-Sephacel; it was distinct from casein kinase 2, which was not developmentally regulated. In parallel with these elevated kinase activities during development, there was increased in vitro phosphorylation of a number of Dictyostelium proteins, including two major phosphoproteins of 140 and 94 kDa.  相似文献   

2.
Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.  相似文献   

3.
Adenylate cyclase of aggregation phase Dictyostelium discoideum is activated by extracellular adenosine 3', 5'-cyclic monophosphate (cAMP), and the cAMP synthesized is secreted. The distribution of the enzyme was determined in sucrose gradients loaded with whole cell lysates. Cell lysates prepared after 4.5 hr of starvation revealed membranes containing adenylate cyclase at 44% and 33% sucrose. The activity of the latter peak was detected in the presence of the detergent (CHAPS), 3-(3-cholamidopropyl) dimethylammonio-3-propanesulfonate, which inhibited the activity of the former to some extent. Adenylate cyclase activity of the 2 peaks differed with respect to solubility in CHAPS and their kinetics. The 44% sucrose region of the gradient contained the bulk of the plasma membranes, as judged by a cell surface glycoprotein marker (contact site A). The 33% peak is composed of small vesicular structures, as determined by electron microscopy. The distribution of adenylate cyclase activity detected in sucrose gradients shifted from the 33% to the 44% sucrose peak during development. In addition, the 44% peak became increasingly resistant to the inhibitory effect of CHAPS. Both changes were accelerated by extracellular cAMP, but only the latter was abolished when the production of endogenous cAMP was inhibited by caffeine. Pulsing cells with cAMP overcame the inhibitory effect of caffeine.  相似文献   

4.
Dictyostelium discoideum, an organism that undergoes development and that is amenable to biochemical and molecular genetic approaches, is an attractive model organism with which to study the role of tyrosine phosphorylation in cell-cell communication. We report the presence of protein-tyrosine kinase genes in D. discoideum. Screening of a Dictyostelium cDNA expression library with an anti-phosphotyrosine antibody identifies fusion proteins that exhibit protein-tyrosine kinase activity. Two distinct cDNAs were identified and isolated. Though highly homologous to protein kinases in general, these kinases do not exhibit many of the hallmarks of protein-tyrosine kinases of higher eucaryotes. In addition, these genes are developmentally regulated, which suggests a role for tyrosine phosphorylation in controlling Dictyostelium development.  相似文献   

5.
《Cell differentiation》1979,8(2):117-127
The soluble fraction of exponential phase cells inhibits differentiation and aggregation in cells of Dictyostelium discoideum. Lower inhibitor activities have been found in aggregation-competent cells than in growth phase cells. The inhibitor has a molecular weight between 1000 and 1300, as determined on Sephadex G-25. It is stable against heat, alkali and acid, and resists periodate and pronase treatment. Three biochemical processes accompanying cell differentiation have been shown to be blocked by the inhibitor: the increase of adenylyl cyclase activity, the formation of EDTA-stable cell contacts, and the release of an inhibitor of cyclic-AMP phosphodieterase into the extracellular medium.  相似文献   

6.
J Sampson 《Cell》1977,11(1):173-180
Two apparently distinct species of cyclic AMP-dependent protein kinase appear during the first 1-2 hr of development in Dictyostelium discoideum; no such activity can be detected in vegetative cell extracts. These two kinases are similar in properties to the type I and II cyclic AMP-dependent protein kinases found in a number of mammalian tissues. Their time of appearance supports the idea that one or both mediate the effects of cyclic AMP on gene expression early in Dictyostelium development.  相似文献   

7.
During development of Dictyostelium discoideum, the cellular specific activity of beta-glucosidase increases before aggregation, declines to low levels during pseudoplasmodium formation, and increases rapidly during culmination. In addition, two electrophoretically distinct isozymes of beta-glucosidase are present at different times of development. Using enzyme-specific monoclonal antibodies, we have shown that changes in the level of enzyme specific activity are closely paralleled by changes in the relative rate of beta-glucosidase synthesis in vivo and by corresponding changes in the relative cellular concentration of functional beta-glucosidase mRNA. Thus, the developmental synthesis of beta-glucosidase is controlled at a pretranslational level. Furthermore, our experiments have demonstrated that both beta-glucosidase isozymes consist of a single subunit of identical molecular weight. This result is consistent with the previous finding that both isozymes are encoded by the same gene and suggests that the isozymes differ solely with respect to post-translational modification.  相似文献   

8.
9.
We cloned a protein kinase (DdKinY) from Dictyostelium discoideum by low stringency hybridization using the catalytic domain from DdKinX [B.W. Wetterauer et al., Biochim. Biophys. Acta 1265 (1995) 97-101] as a probe. Both kinases have low sequence similarity to other protein kinases in the databases. However, phylogenetic analysis showed that both kinases cluster with vertebrate LIM kinases due to homology within the catalytic domain.  相似文献   

10.
Protein phosphatase activities in developing Dictyostelium discoideum cells were investigated. Substrates were prepared by phosphorylation of histone H2b and kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) using cAMP-dependent protein kinase. Two histone phosphatase activities (Mr 170 000 and 520 000) and one kemptide phosphatase activity (Mr 230 000) were found in the cytosolic cell fraction. Histone phosphatase was also present in the particulate fraction, kemptide phosphatase was not. All phosphatase activities were present throughout development. No differences in protein phosphatase activities were found in prespore and prestalk cells. A heat-stable factor which inhibits the particulate and both soluble histone phosphatase activities was isolated.  相似文献   

11.
PKA在盘基网柄菌(Dictyostelium discoideum)多细胞发育中的作用   总被引:1,自引:0,他引:1  
在盘基网柄菌(Dictyosteliumdiscoideum)多细胞发育中,蛋白激酶A(proteinkinaseA,PKA)发挥多重作用.细胞聚集阶段,PKA调节腺苷酰环化酶的活性,中转cAMP,诱导dut、pdi等一些发育早期的基因表达;参与启动聚集后的细胞分化和形态构成,增强GBF活性,激活前孢子细胞特有基因的表达;它还精密调控前柄细胞特有基因ecmB的表达,准确启动拔顶发育,诱导孢柄和孢子的成熟.子实体形成后,PKA又是维持孢子休眠和保证孢子有效萌发的必需因子.在PKA调控下,盘基网柄菌有条不紊地完成整个发育过程.  相似文献   

12.
Discoidin-binding polysaccharide from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Extracts of Dictyostelium discoideum grown axenically in a chemically defined medium were evaluated for binding to discoidin I and discoidin II, endogenous lectins of this slime mold. Binding activity was measured by competitive inhibition of 125I-lactosyl-bovine serum albumin binding to the immobilized lectins. With the solubilization procedure used extracts of vegetative cells and of early aggregates had no significant inhibitory activity, but an abundant discoidin-binding substance was detected in late aggregates and fruiting bodies. This material was purified by ethanol and acid precipitation followed by precipitation with discoidin. It is a polysaccharide composed of 77% galactose, 15% N-acetylgalactosamine, 5% glucose, and 3% N-acetylglucosamine and may be a biologically functional ligand for the slime mold lectins, in particular discoidin II. Use of axenic cells was critical in these experiments, since extracts of Escherichia coli and Klebsiella aerogenes, commonly used as food for D. discoideum, were found to contain substances that react with discoidin. This would complicate isolation of endogenous discoidin ligands from cells raised on bacteria.  相似文献   

13.
We have developed an in vitro translation system for the lower eukaryote Dictyostelium discoideum. Active extracts using endogenous mRNA support protein synthesis with optimal Mg2+ and K+ concentrations of 5 mM and 120 mM, respectively. [35S]Methionine incorporation is linear for more than 2 h. Polypeptides synthesized from endogenous mRNA have sizes ranging from less than 20 to over 100 kDa. Heat-shock proteins are synthesized in vitro in extracts prepared from heat-shocked cells. Possible uses of this system for study of translational control during growth and differentiation are discussed.  相似文献   

14.
A protein kinase with unusual characteristics has been found in Dictyostelium discoideum. This kinase can use histone H1 as exogenous substrate, and the activity is stimulated by phospholipids, but not by Ca2+. This enzyme has been partially purified by using chromatography on DEAE-cellulose DE-52, spermine-agarose and phosphatidylserine-polyacrylamide. The protein kinase activity is very labile, even in the presence of protease inhibitors, making further purification difficult. In the activity-containing fractions, an endogenous protein of 140 kDa is labelled in vitro with [gamma-32P]ATP under conditions in which intramolecular rather than intermolecular reactions are favoured. This protein is labelled only in the presence of phospholipids, but not of Ca2+. We propose that the 140 kDa phosphoprotein might be the autophosphorylated enzyme.  相似文献   

15.
Actin filaments and microtubules are two major cytoskeletal systems involved in wide cellular processes, and the organizations of their filamentous networks are regulated by a large number of associated proteins. Recently, evidence has accumulated for the functional cooperation between the two filament systems via associated proteins. However, little is known about the interactions of the kinesin superfamily proteins, a class of microtubule-based motor proteins, with actin filaments. Here, we describe the identification and characterization of a novel kinesin-related protein named DdKin5 from Dictyostelium. DdKin5 consists of an N-terminal conserved motor domain, a central stalk region, and a C-terminal tail domain. The motor domain showed binding to microtubules in an ATP-dependent manner that is characteristic of kinesin-related proteins. We found that the C-terminal tail domain directly interacts with actin filaments and bundles them in vitro. Immunofluorescence studies showed that DdKin5 is specifically enriched at the actin-rich surface protrusions in cells. Overexpression of the DdKin5 protein affected the organization of actin filaments in cells. We propose that a kinesin-related protein, DdKin5, is a novel actin-bundling protein and a potential cross-linker of actin filaments and microtubules associated with specific actin-based structures in Dictyostelium.  相似文献   

16.
We have analyzed the total cell extract, cell surface, and secretory protein profiles related to cellular differentiation triggered by dimethylsulfoxide in the insect trypanosomatid Herpetomonas samuelpessoai. The flagellates were cultivated in chemically defined conditions in the absence or in the presence of 4% DMSO, and the resolved protein bands were detected by SDS-PAGE gels and avidin-Western blotting. The cell-associated proteins showed a complex pattern of around 40 silver-staining bands ranging from 15 to 150 kDa. There were generally minor quantitative differences in the protein profile between the non-treated and the DMSO-treated cells. The cell-surface protein profile revealed by the incubation of live parasites with biotin showed a decrease in the expression of the 120 kDa biotinylated polypeptide observed in the DMSO-treated cells when compared with untreated ones. However, control samples of both systems showed an endogenous biotinylated polypeptide of 63 kDa which also presented gelatinolytic activity. The trypanosomatids released at least 10 polypeptides to the culture medium. A low molecular mass exopolypeptide (35 kDa) was found exclusively in untreated cells, whereas a high-molecular-mass exopolypetide (250 kDa) was preferentially found in DMSO-treated cells. Received: 12 July 2000 / Accepted: 14 August 2000  相似文献   

17.
D. discoideum has two alternative developmental pathways. If cells of two complement mating-type strains, NC4 and HM1, fuse sexually, a giant cell is produced which subsequently develops into a macrocyst, the sexual structure of this organism. However, if fusion fails to occur and cells are starved, a fruiting-body is produced instead of a macrocyst. In this paper, a two-dimensional polypeptide gel electrophoresis study showed that giant cells produce specific polypeptides which may possibly be involved in macrocyst development. Out of total 497 polypeptides which appeared in a giant cell during an incubation period of 13 hr, 92 were the specific for giant cells. Four of these polypeptides were appeared within only 1 hr after the cell fusion. The other 405 were non-specific polypeptides which appeared in both giant cells and NC4 or/and HM1 cells. However, the patterns and the rates of production of each polypeptide during the incubation period were different between these cells.  相似文献   

18.
We have isolated and partially characterized an acid endonuclease activity from the cellular slime mold, Dictyostelium discoideum. This activity comprises more than 90% of the nonspecific DNA-endonuclease activity of the vegetative cells. Its molecular weight is about 44 000, and its activity is enhanced 7-fold by Mg2+. The pH optimum for the nicking activity depends upon NaCl concentrations, being at pH 5.0 in 207 mM NaCl, and at pH 5.8 in 7 mM NaCl. Large quantities of this enzyme activity are released into the growth medium or buffer, with detectable amounts appearing within 15 min of incubation.  相似文献   

19.
Kinesins are a diverse superfamily of motor proteins that drive organelles and other microtubule-based movements in eukaryotic cells. These motors play important roles in multiple events during both interphase and cell division. Dictyostelium discoideum contains 13 kinesin motors, 12 of which are grouped into nine families, plus one orphan. Functions for 11 of the 13 motors have been previously investigated; we address here the activities of the two remaining kinesins, both isoforms with central motor domains. Kif6 (of the kinesin-13 family) appears to be essential for cell viability. The partial knockdown of Kif6 with RNA interference generates mitotic defects (lagging chromosomes and aberrant spindle assemblies) that are consistent with kinesin-13 disruptions in other organisms. However, the orphan motor Kif9 participates in a completely novel kinesin activity, one that maintains a connection between the microtubule-organizing center (MTOC) and nucleus during interphase. kif9 null cell growth is impaired, and the MTOC appears to disconnect from its normally tight nuclear linkage. Mitotic spindles elongate in a normal fashion in kif9 cells, but we hypothesize that this kinesin is important for positioning the MTOC into the nuclear envelope during prophase. This function would be significant for the early steps of cell division and also may play a role in regulating centrosome replication.Directed cell migration, organelle transport, and cell division involve fundamental motilities that are necessary for eukaryotic cell viability and function. Much of the force required for these motilities is generated through the cyclical interactions of motor proteins with the cell cytoskeleton. Microtubules (MTs) and actin filaments provide structural support and directional guides, and all eukaryotic organisms have diverse, often extensive families of motors that carry out different tasks. Functional studies have revealed that many of the motors work in combination with others, and that the individual deletion of a single motor activity often is insufficient to produce a defect that substantially impairs cell growth or function. The latter phenomenon is particularly evident in some organisms with simple motor families (14, 42). By contrasting homologous motor functions between simple and complex systems, we hope to learn the details of how each motor is custom-tuned for specific tasks.Dictyostelium discoideum is a compact amoeba that exhibits robust forms of motility common to nearly all animal cells, with speeds that frequently exceed corresponding rates in vertebrate cell models (25, 33, 54). Since Dictyostelium possesses a relatively small number of motor proteins (13 kinesin, 1 dynein, and 13 myosin isoforms [23, 24, 26]), it combines advantages of terrific cytology with straightforward molecular genetics and thus represents an excellent model to investigate individual and combined motor protein actions. To date, 11 of the 13 kinesin motors have been analyzed functionally (5, 17, 18, 30, 42, 46, 51, 60). Only 1 of these 11 motors, Kif3, a member of the kinesin-1 family of organelle transporters, appears to be essential for organism viability (51). Individual disruptions of three kinesin genes (kif1, kif4, and kif12) produce distinctive defects in cell growth or organelle transport (30, 42, 46). Analyses of six of the seven other kinesins reveal important phenotypes but only when combined with other motor disruptions or cell stresses. We address here the roles of the remaining two Dictyostelium MT-based motors.kif6 and kif9 encode two central motor kinesins in the Dictyostelium genome (24). The best-studied isoforms of this motor type are represented by the kinesin-13 family, and they largely function to regulate MT length during cell division (13, 16, 40, 41). In some organisms, kinesin-13 motors also have been shown to operate during interphase and to mediate MT and flagellar length control (3, 4, 15) and perhaps even organelle transport (32, 43, 56). kif6 encodes the kinesin-13 family member in Dictyostelium. We demonstrate that Kif6 activity is essential for viability, and that it plays a primary, conserved role in chromosome segregation during cell division.The second of the central motor kinesins, Kif9, does not group with an existing family (24, 38). The gene disruption of this motor reveals a completely novel function for a kinesin in maintaining a connection between the MT-organizing center (MTOC) and the nucleus. By electron microscopy (EM), the MTOC of Dictyostelium appears as a cytoplasmic cube-shaped structure surrounded by amorphous dense material (39, 44). EM, biochemical analyses, antibody labeling, and live-cell imaging studies have demonstrated that during interphase, the cytoplasmic MTOC is firmly and closely attached to the nucleus (28, 29, 44, 48, 49, 63). Upon entry into mitosis, the MTOC duplicates during prophase and is brought to or into a fenestration of the nuclear envelope, and then it establishes an intranuclear bipolar spindle for division (39, 53, 64). While MTOCs can be purified from Dictyostelium, the methods rely heavily on reagents that actively disrupt the attached nuclei (10, 59). A recent study has identified at least one component of this connection, the nuclear envelope protein Sun-1 (67). The perturbation of Sun-1 affects nuclear shape and results in centrosome detachment, hyperamplification, and aneuploidy. We demonstrate in the current work that the disruption of the Kif9 kinesin also perturbs the MTOC-nucleus linkage. Our results suggest that an MT-mediated mechanism plays a significant role in maintaining an MTOC-nucleus connection during interphase, and we discuss how this connection could be important to regulate centrosome replication and ensure proper chromosome segregation during cell division.  相似文献   

20.
LIS1蛋白是一种与人类无脑回疾病以及细胞癌变相关的重要蛋白。对盘基网柄菌DdLIS1进行生物信息学分析,探究盘基网柄菌能否作为研究人类无脑回疾病及细胞癌变机制的模型。现从NCBI中的Genank找到盘基网柄菌DdLIS1的氨基酸序列,随后进行blastp找到模式生物中相似序列,利用理化性分析网站ProtScale、ProtParam分析DdLIS1的理化性质,通过NCBI中的保守结构域库(CDD)分析DdLIS1的保守结构域,使用MEGA6.0并选用邻位连接法构建系统进化树,分别使用PredictProtein、SWISS-MODEL网站预测Dd LIS1蛋白的二级结构、三维结构。结果得出DdLIS1蛋白全长为419,属于亲水性蛋白,有7个保守结构域,属于WD40家族,与人类和小鼠的氨基酸序列相似性为72%。二级结构中β折叠所占比例最高,为49.40%,α螺旋、随机卷曲分别占该蛋白7.16%、43.44%,与三级结构一致。以上结果说明DdLIS1与LIS1高度相似,有助于盘基网柄菌能够作为研究人类无脑回疾病以及细胞癌变机制的模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号