首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1-null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.  相似文献   

2.
Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.  相似文献   

3.
Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.  相似文献   

4.
The exons of the low-density-lipoprotein-(LDL)-receptor gene from a Japanese patient with homozygous familial hypercholesterolemia were amplified by the polymerase chain reaction (PCR), and their nucleotide sequences were determined. A point mutation from G to C was found in exon 9, which was expected to change Asp at position 412 to His. This amino acid change occurred within the epidermal-growth-factor-precursor homology domain of the LDL receptor, slightly impairing the processing from the precursor to the mature form and causing rapid degradation of the mature form in the fibroblasts of the patient. The mutant LDL-receptor gene transfected into COS-1 cells expressed a LDL-receptor protein with the same properties as the protein expressed in the fibroblasts of the patient; impaired processing and rapid degradation of the synthesized receptor protein. The mutation was identified in family members of the patient by dot-blot hybridization of PCR-amplified DNA with the mutant oligonucleotide. The family members carrying the mutant gene showed higher serum cholesterol levels than the others. However, their cholesterol levels were also greatly influenced by the apolipoprotein-E phenotype.  相似文献   

5.
A family of autosomal-dominant diseases including May-Hegglin anomaly, Fechtner syndrome, Sebastian syndrome, Alport syndrome, and Epstein syndrome are commonly characterized by giant platelets and thrombocytopenia. In addition, there may be leukocyte inclusions, deafness, cataracts, and nephritis, depending on the syndrome. Mutations in the human nonmuscle myosin IIA heavy chain gene (MYH9) have been linked to these diseases. Two of the recently described mutations, N93K and R702C, are conserved in smooth and nonmuscle myosins from vertebrates and lie in the head domain of myosin. Interestingly, the two mutations lie within close proximity in the three-dimensional structure of myosin. These two mutations were engineered into a heavy meromyosin-like recombinant fragment of nonmuscle myosin IIA, which was expressed in baculovirus along with the appropriate light chains. The R702C mutant displays 25% of the maximal MgATPase activity of wild type heavy meromyosin and moves actin filaments at half the wild type rate. The effects of the N93K mutation are more dramatic. This heavy meromyosin has only 4% of the maximal MgATPase activity of wild type and does not translocate actin filaments in an in vitro motility assay. Biochemical characterization of the mutant is consistent with this mutant being unable to fully adopt the "on" conformation.  相似文献   

6.
c-Src-null mutants have not provided a full understanding of the cellular functions of c-Src, reflecting the functional redundancy among Src family members. c-Src is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and Cdk5 at Ser75 in the unique amino terminal c-Src-specific domain. The specific roles of c-Src may be assessed by establishing mouse embryonic stem (ES) cells homozygous for a point mutation at Ser75. Mammalian homozygous cultured cells with a point mutation, however, have not yet been produced by gene targeting. Here we show an efficient procedure for producing ES cell clones bearing a homozygous Ser75 to Asp mutation in the c-src gene. This procedure was developed by combining two previously reported strategies: our procedure for introducing a point mutation into one allele with no exogenous sequence, and the high-geneticin (G418) selection procedure for introducing a mutation into both alleles. The mutant clones expressed the same levels of c-Src protein and autophosphorylation activity as wild-type cells, but the mutant c-Src was not phosphorylated on Ser75 during mitosis. This procedure is feasible for generating cells homozygous for a subtle mutation in most genes, and is expected to be applicable to other somatic cell lines.  相似文献   

7.
Divergent regulation of the sarcomere and the cytoskeleton   总被引:1,自引:0,他引:1  
The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.  相似文献   

8.
alpha-Actinin is an abundant actin-bundling and adhesion protein that directly links actin filaments to integrin receptors. Previously, in platelet-derived growth factor-treated fibroblasts, we demonstrated that phosphoinositides bind to alpha-actinin, regulating its localization (Greenwood, J. A., Theibert, A. B., Prestwich, G. D., and Murphy-Ullrich, J. E. (2000) J. Cell Biol. 150, 627- 642). In this study, phosphoinositide binding and regulation of alpha-actinin function is further characterized. Phosphoinositide binding specificity, determined using a protein-lipid overlay procedure, suggests that alpha-actinin interacts with phosphates on the 4th and 5th position of the inositol head group. Binding assays and mutational analyses demonstrate that phosphoinositides bind to the calponin homology domain 2 of alpha-actinin. Phosphoinositide binding inhibited the bundling activity of alpha-actinin by blocking the interaction of the actin-binding domain with actin filaments. Consistent with these results, excessive bundling of actin filaments was observed in fibroblasts expressing an alpha-actinin mutant with decreased phosphoinositide affinity. We conclude that the interaction of alpha-actinin with phosphoinositides regulates actin stress fibers in the cell by controlling the extent to which microfilaments are bundled.  相似文献   

9.
Calponins and transgelins are members of a conserved family of actin-associated proteins widely expressed from yeast to humans. Although a role for calponin in muscle cells has been described, the biochemical activities and in vivo functions of nonmuscle calponins and transgelins are largely unknown. Herein, we have used genetic and biochemical analyses to characterize the budding yeast member of this family, Scp1, which most closely resembles transgelin and contains one calponin homology (CH) domain. We show that Scp1 is a novel component of yeast cortical actin patches and shares in vivo functions and biochemical activities with Sac6/fimbrin, the one other actin patch component that contains CH domains. Purified Scp1 binds directly to filamentous actin, cross-links actin filaments, and stabilizes filaments against disassembly. Sequences in Scp1 sufficient for actin binding and cross-linking reside in its carboxy terminus, outside the CH domain. Overexpression of SCP1 suppresses sac6Delta defects, and deletion of SCP1 enhances sac6Delta defects. Together, these data show that Scp1 and Sac6/fimbrin cooperate to stabilize and organize the yeast actin cytoskeleton.  相似文献   

10.
Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83-kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.  相似文献   

11.
We have previously reported that actin filaments are involved in protein transport from the Golgi complex to the endoplasmic reticulum. Herein, we examined whether myosin motors or actin comets mediate this transport. To address this issue we have used, on one hand, a combination of specific inhibitors such as 2,3-butanedione monoxime (BDM) and 1-[5-isoquinoline sulfonyl]-2-methyl piperazine (ML7), which inhibit myosin and the phosphorylation of myosin II by the myosin light chain kinase, respectively; and a mutant of the nonmuscle myosin II regulatory light chain, which cannot be phosphorylated (MRLC2(AA)). On the other hand, actin comet tails were induced by the overexpression of phosphatidylinositol phosphate 5-kinase. Cells treated with BDM/ML7 or those that express the MRLC2(AA) mutant revealed a significant reduction in the brefeldin A (BFA)-induced fusion of Golgi enzymes with the endoplasmic reticulum (ER). This delay was not caused by an alteration in the formation of the BFA-induced tubules from the Golgi complex. In addition, the Shiga toxin fragment B transport from the Golgi complex to the ER was also altered. This impairment in the retrograde protein transport was not due to depletion of intracellular calcium stores or to the activation of Rho kinase. Neither the reassembly of the Golgi complex after BFA removal nor VSV-G transport from ER to the Golgi was altered in cells treated with BDM/ML7 or expressing MRLC2(AA). Finally, transport carriers containing Shiga toxin did not move into the cytosol at the tips of comet tails of polymerizing actin. Collectively, the results indicate that 1) myosin motors move to transport carriers from the Golgi complex to the ER along actin filaments; 2) nonmuscle myosin II mediates in this process; and 3) actin comets are not involved in retrograde transport.  相似文献   

12.
Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments   总被引:2,自引:0,他引:2  
C Weigt  I Just  A Wegner  K Aktories 《FEBS letters》1989,246(1-2):181-184
The effect of nonmuscle actin ADP-ribosylated by botulinum C2 toxin on the polymerization of nonmuscle actin was investigated in order to clarify whether nonmuscle actin is converted into a capping protein by ADP-ribosylation. ADP-ribosylated actin was found to decrease the rate of polymerization of actin filaments which are free at both ends. ADP-ribosylated actin turned out to have no effect on the rate or extent of polymerization at the pointed ends of actin filaments the barbed ends of which were capped by gelsolin. The monomer concentration reached at the final stage of polymerization was similar to the critical concentration of the pointed ends of actin filaments. The results suggest that nonmuscle actin ADP-ribosylated by botulinum C2 toxin acts as a capping protein which binds to the barbed ends to inhibit polymerization.  相似文献   

13.
Dystrophin is widely thought to mechanically link the cortical cytoskeleton with the muscle sarcolemma. Although the dystrophin homolog utrophin can functionally compensate for dystrophin in mice, recent studies question whether utrophin can bind laterally along actin filaments and anchor filaments to the sarcolemma. Herein, we have expressed full-length recombinant utrophin and show that the purified protein is fully soluble with a native molecular weight and molecular dimensions indicative of monomers. We demonstrate that like dystrophin, utrophin can form an extensive lateral association with actin filaments and protect actin filaments from depolymerization in vitro. However, utrophin binds laterally along actin filaments through contribution of acidic spectrin-like repeats rather than the cluster of basic repeats used by dystrophin. We also show that the defective linkage between costameric actin filaments and the sarcolemma in dystrophin-deficient mdx muscle is rescued by overexpression of utrophin. Our results demonstrate that utrophin and dystrophin are functionally interchangeable actin binding proteins, but that the molecular epitopes important for filament binding differ between the two proteins. More generally, our results raise the possibility that spectrin-like repeats may enable some members of the plakin family of cytolinkers to laterally bind and stabilize actin filaments.  相似文献   

14.
Previously, we have shown that the V-ATPase holoenzyme as well as the V1 complex isolated from the midgut of the tobacco hornworm (Manduca sexta) exhibits the ability of binding to actin filaments via the V1 subunits B and C (Vitavska, O., Wieczorek, H., and Merzendorfer,H. (2003) J. Biol. Chem. 278, 18499-18505). Since the recombinant subunit C not only enhances actin binding of the V1 complex but also can bind separately to F-actin, we analyzed the interaction of recombinant subunit C with actin. We demonstrate that it binds not only to F-actin but also to monomeric G-actin. With dissociation constants of approximately 50 nm, the interaction exhibits a high affinity, and no difference could be observed between binding to ATP-G-actin or ADP-G-actin, respectively. Unlike other proteins such as members of the ADF/cofilin family, which also bind to G- as well as to F-actin, subunit C does not destabilize actin filaments. On the contrary, under conditions where the disassembly of F-actin into G-actin usually occurred, subunit C stabilized F-actin. In addition, it increased the initial rate of actin polymerization in a concentration-dependent manner and was shown to cross-link actin filaments to bundles of varying thickness. Apparently bundling is enabled by the existence of at least two actin-binding sites present in the N- and in the C-terminal halves of subunits C, respectively. Since subunit C has the possibility to dimerize or even to oligomerize, spacing between actin filaments could be variable in size.  相似文献   

15.
G-actin freed from exogenous ATP was added to the pieces of isolated acrosomal actin bundles from horseshoe crab sperm to form filaments as reported earlier (Tilney, L.G., Bonder, E.M., & DeRosier, D.J. (1981) J. Cell Biol. 90, 485-494). The growth of a filament was far more rapid at one end (the preferred end) than the other end. These ends were shown to correspond to the barbed and pointed ends, respectively, by decoration of the filaments with myosin subfragment 1. Cytochalasin B inhibited the monomer addition at the preferred end. This technique is useful in determining the ends to which actin filament end-binding proteins from nonmuscle cells bind, which are considered to regulate the actin polymerization in the cells.  相似文献   

16.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

17.
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.  相似文献   

18.
Stimulation of beta-adrenergic receptors (betaARs) leads to sequential recruitment of beta-arrestin, AP-2 adaptor protein, clathrin, and dynamin to the receptor complex, resulting in endocytosis. Whether a dynamic actin cytoskeleton is required for betaAR endocytosis is not known. In this study, we have used beta(1)- and beta(2) ARs, two ubiquitously expressed members of the betaAR family, to comprehensively evaluate the requirement of the actin cytoskeleton in receptor internalization. The integrity of the actin cytoskeleton was manipulated with the agent latrunculin B (LB) and mutants of cofilin to depolymerize actin filaments. Treatment of cells with LB resulted in dose-dependent depolymerization of the cortical actin cytoskeleton that was associated with significant attenuation in internalization of beta(2)ARs, beta(1)ARs, and mutants of beta(1)ARs that internalize via either clathrin- or caveolin-dependent pathways. Importantly, LB treatment did not inhibit beta-arrestin translocation or dynamin recruitment to the agonist-stimulated receptor. To unequivocally demonstrate the requirement of the actin cytoskeleton for beta(2)AR endocytosis, we used an actin-binding protein cofilin that biochemically depolymerizes and severs actin filaments. Isoproterenol-mediated internalization of beta(2)AR was completely blocked in the presence of wild type cofilin, which could be rescued by a mutant of cofilin that mimics a constitutive phosphorylated state and leads to normal agonist-stimulated beta(2)AR endocytosis. Finally, treatment with jasplakinolide, an inhibitor of actin turnover, resulted in dose-dependent inhibition of beta(2)AR internalization, suggesting that turnover of actin filaments at the receptor complex is required for endocytosis. Taken together, these data demonstrate that intact and functional dynamic actin cytoskeleton is required for normal betaAR internalization.  相似文献   

19.
Striated muscle thin filaments adopt different quaternary structures, depending upon calcium binding to troponin and myosin binding to actin. Modification of actin subdomain 2 alters troponin-tropomyosin-mediated regulation, suggesting that this region of actin may contain important protein-protein interaction sites. We used yeast actin mutant D56A/E57A to examine this issue. The mutation increased the affinity of tropomyosin for actin 3-fold. The addition of Ca(2+) to mutant actin filaments containing troponin-tropomyosin produced little increase in the thin filament-myosin S1 MgATPase rate. Despite this, three-dimensional reconstruction of electron microscope images of filaments in the presence of troponin and Ca(2+) showed tropomyosin to be in a position similar to that found for muscle actin filaments, where most of the myosin binding site is exposed. Troponin-tropomyosin bound with comparable affinity to mutant and wild type actin in the absence and presence of calcium, and in the presence of myosin S1, tropomyosin bound very tightly to both types of actin. The mutation decreased actin-myosin S1 affinity 13-fold in the presence of troponin-tropomyosin and 2.6-fold in the absence of the regulatory proteins. The results suggest the importance of negatively charged actin subdomain 2 residues 56 and 57 for myosin binding to actin, for tropomyosin-actin interactions, and for regulatory conformational changes in the actin-troponin-tropomyosin complex.  相似文献   

20.
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号