首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the yeast Saccharomyces cerevisiae, the Apg12p-Apg5p conjugating system is essential for autophagy. Apg7p is required for the conjugation reaction, because Apg12p is unable to form a conjugate with Apg5p in the apg7/cvt2 mutant. Apg7p shows a significant similarity to a ubiquitin-activating enzyme, Uba1p. In this article, we investigated the function of Apg7p as an Apg12p-activating enzyme. Hemagglutinin-tagged Apg12p was coimmunoprecipitated with c-myc-tagged Apg7p. A two-hybrid experiment confirmed the interaction. The coimmunoprecipitation was sensitive to a thiol-reducing reagent. Furthermore, a thioester conjugate of Apg7p was detected in a lysate of cells overexpressing both Apg7p and Apg12p. These results indicated that Apg12p interacts with Apg7p via a thioester bond. Mutational analyses of Apg7p suggested that Cys507 of Apg7p is an active site cysteine and that both the ATP-binding domain and the cysteine residue are essential for the conjugation of Apg7p with Apg12p to form the Apg12p-Apg5p conjugate. Cells expressing mutant Apg7ps, Apg7pG333A, or Apg7pC507A showed defects in autophagy and cytoplasm-to-vacuole targeting of aminopeptidase I. These results indicated that Apg7p functions as a novel protein-activating enzyme necessary for Apg12p-Apg5p conjugation.  相似文献   

2.
Solvent effects on the stability of A7U7p   总被引:5,自引:0,他引:5  
D R Hickey  D H Turner 《Biochemistry》1985,24(8):2086-2094
The thermodynamics of double-helix formation were measured spectrophotometrically for A7U7 in water at 1 M NaCl and for A7U7p in a variety of solvent mixtures and salt. Comparison of the A7U7 results with calorimetric measurements indicates duplex formation involves intermediate states. For A7U7p between 0.06 and 0.55 M Na+, dTm/d(log [Na+]) = 17.4 degrees C, similar to the value of 19.6 degrees C for poly-(A).poly(U) [Krakauer, H., & Sturtevant, J. M. (1968) Biopolymers 6, 491-512]. At 1 M NaCl, the A7U7p duplex is most stable in 100% water. For 10 mol % solutions, the order for A7U7p duplex stability is ethylene glycol greater than glycerol greater than ethanol greater than 2-propanol greater than dimethyl sulfoxide greater than 1-propanol greater than formamide greater than N,N-dimethylformamide greater than urea greater than dioxane. Comparison of changes in stability and thermodynamic parameters with literature results for proteins suggests proteins and A7U7p interact differently with solvent. The results suggest hydrophobic bonding is not a major contributor to the stability of the A7U7p duplex. Comparisons with bulk solvent surface tension suggest the energy of cavity formation is also not a major contributor to duplex stability.  相似文献   

3.
In Saccharomyces cerevisiae, the Wee1 family kinase Swe1p is normally stable during G(1) and S phases but is unstable during G(2) and M phases due to ubiquitination and subsequent degradation. However, perturbations of the actin cytoskeleton lead to a stabilization and accumulation of Swe1p. This response constitutes part of a morphogenesis checkpoint that couples cell cycle progression to proper bud formation, but the basis for the regulation of Swe1p degradation by the morphogenesis checkpoint remains unknown. Previous studies have identified a protein kinase, Hsl1p, and a phylogenetically conserved protein of unknown function, Hsl7p, as putative negative regulators of Swe1p. We report here that Hsl1p and Hsl7p act in concert to target Swe1p for degradation. Both proteins are required for Swe1p degradation during the unperturbed cell cycle, and excess Hsl1p accelerates Swe1p degradation in the G(2)-M phase. Hsl1p accumulates periodically during the cell cycle and promotes the periodic phosphorylation of Hsl7p. Hsl7p can be detected in a complex with Swe1p in cell lysates, and the overexpression of Hsl7p or Hsl1p produces an effective override of the G(2) arrest imposed by the morphogenesis checkpoint. These findings suggest that Hsl1p and Hsl7p interact directly with Swe1p to promote its recognition by the ubiquitination complex, leading ultimately to its destruction.  相似文献   

4.
mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export.  相似文献   

5.
Summary A tiny interstitial delection of 7p was found in a 5-month-old boy with a craniosynostosis and many anomalies. His karyotype was 46,XY,del(7)(p15.3p21.3). Here we present not only further evidence of an association between craniosynostosis and 7p monosomy, but also deletion mapping to indicate that the critical segment for craniosynostosis lies in the mid-portion of 7p21, that is at 7p21.2 or the proximal part of 7p21.3.  相似文献   

6.
The inappropriate expression of the a-factor pheromone receptor (Ste3p) in the MATa cell leads to a striking inhibition of the yeast pheromone response, the result of a functional interaction between Ste3p and some MATa-specific protein. The present work identifies this protein as Asg7p. Normally, expression of Ste3p and Asg7p is limited to distinct haploid mating types, Ste3p to MATalpha cells and Asg7p to MATa cells. Artificial coexpression of the two in the same cell, either a or alpha, leads to dramatic inhibition of the pheromone response. Ste3p-Asg7p coexpression also perturbs the membrane trafficking of Ste3p: Ste3p turnover is slowed, a result of an Asg7p-mediated retardation of the secretory delivery of the newly synthesized receptor to the plasma membrane. However, in the absence of ectopic Ste3p expression, the asg7Delta mutation is without consequence either for pheromone signaling or overall mating efficiency of a cells. Indeed, the sole phenotype that can be assigned to MATa asg7Delta cells is observed following zygotic fusion to its alpha mating partner. Though formed at wild-type efficiency, zygotes from these pairings are morphologically abnormal. The pattern of growth is deranged: emergence of the first mitotic bud is delayed, and, in its place, growth is apparently diverted into a novel structure superficially resembling the polarized mating projection characteristic of haploid cells responding to pheromone. Together these results suggest a mechanism in which, following the zygotic fusion event, Ste3p and Asg7p gain access to one another and together act to repress the pheromone response, promoting the transition of the new diploid cell to vegetative growth.  相似文献   

7.
A balanced translocation was found in a normal female with a history of four abortions. On the basis of the Giemsa-banding pattern the abnormality was interpreted as to be a translocation of a part of the long arm of chromosome 13 to the short arm of chromosome some 7:t(7;13)(7qter leads to 7p22::13q14 leads to 13qter;13q14 leads to 13pter::7p22 leads to 7 pter). Problems in genetic counseling are discussed with respect to this case.  相似文献   

8.
9.
Sec7p directs the transitions required for yeast Golgi biogenesis   总被引:6,自引:0,他引:6  
Endoplasmic reticulum (ER)-to-Golgi traffic in yeast proceeds by the maturation of membrane compartments from post-ER vesicles to intermediate small vesicle tubular clusters (VTCs) to Golgi nodular membrane networks (Morin-Ganet et al., Traffic 2000; 1: 56–68). The balance between ER and Golgi compartments is maintained by COPII- and COPI-mediated anterograde and retrograde traffic, which are dependent on Sec7p and ARF function. The sec7-4 temperature-sensitive allele is a mutation in the highly conserved Sec7 domain (Sec7d) found in all ARF-guanine nucleotide exchange factor proteins. Post-ER trafficking is rapidly inactivated in sec7-4 mutant yeast at the restrictive temperature. This conditional defect prevented the normal production of VTCs and instead generated Golgi-like tubes emanating from the ER exit sites. These tubes progressively developed into stacked cisternae defining the landmark sec7 mutant phenotype. Consistent with the in vivo results, a Sec7d peptide inhibited ER-to-Golgi transport and displaced Sec7p from its membrane anchor in vitro . The similarities in the consequences of inactivating Sec7p or ARFs in vivo was revealed by genetic disruption of yeast ARFs or by addition of brefeldin A (BFA) to whole cells. These treatments, as in sec7-4 yeast, affected the morphology of membrane compartments in the ER-Golgi transition. Further evidence for Sec7p involvement in the transition for Golgi biogenesis was revealed by in vitro binding between distinct domains of Sec7p with ARFs, COPI and COPII coat proteins. These results suggest that Sec7p coordinates membrane transitions in Golgi biogenesis by directing and scaffolding the binding and disassembly of coat protein complexes to membranes, both at the VTC transition from ER exit sites to form Golgi elements and for later events in Golgi maturation.  相似文献   

10.
Rab guanosine triphosphatases regulate intracellular membrane traffic by binding specific effector proteins. The yeast Rab Sec4p plays multiple roles in the polarized transport of post-Golgi vesicles to, and their subsequent fusion with, the plasma membrane, suggesting the involvement of several effectors. Yet, only one Sec4p effector has been documented to date: the exocyst protein Sec15p. The exocyst is an octameric protein complex required for tethering secretory vesicles, which is a prerequisite for membrane fusion. In this study, we describe the identification of a second Sec4p effector, Sro7p, which is a member of the lethal giant larvae tumor suppressor family. Sec4-GTP binds to Sro7p in cell extracts as well as to purified Sro7p, and the two proteins can be coimmunoprecipitated. Furthermore, we demonstrate the formation of a ternary complex of Sec4-GTP, Sro7p, and the t-SNARE Sec9p. Genetic data support our conclusion that Sro7p functions downstream of Sec4p and further imply that Sro7p and the exocyst share partially overlapping functions, possibly in SNARE regulation.  相似文献   

11.
Summary An 11-month-old infant with Greig cephalopolysyndactyly syndrome and mild developmental delay is described. High-resolution chromosomal analysis showed a de novo interstitial deletion of chromosome 7p with breakpoints located at p13 and p14. Cytogenetic analysis of polymorphisms of the heterochromatin in the pericentromeric region suggested the deleted chromosome was of paternal origin. This case confirms the localization of Greig syndrome to 7p13 and emphasizes the importance of performing cytogenetic studies on patients with Mendelian disorders who have unusual findings or cognitive abnormalities in a disorder usually associated with normal intellect. Review of clinical features in published reports of patients with a deletion involving 7p13 showed a number to have features overlapping with Greig syndrome. Because of this, we suggest that cytogenetic aberrations, particularly chromosomal microdeletions, may represent a significant etiology for Greig syndrome.  相似文献   

12.
Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo- and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature-sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p-dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPgammaS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.  相似文献   

13.
14.
Lu J  Garcia J  Dulubova I  Südhof TC  Rizo J 《Biochemistry》2002,41(19):5956-5962
PX domains have been recently found to act as phosphoinositide binding modules. In the yeast SNARE protein Vam7p, the PX domain binds to PtdIns(3)P and is required for vacuolar targeting. To gain insight into how PX domains function, the solution structure of the ligand-free Vam7p PX domain has been determined by NMR spectroscopy. The Vam7p PX domain has the same overall alpha/beta fold observed in the structures of the ligand-free p47(phox) PX domain and the PtdIns(3)P-bound p40(phox) PX domain, exhibiting several similarities and differences with these two PX domains. Most striking is the similarity between the Vam7p and p40(phox) PX domains in a subset of secondary structure elements despite the low level of sequence identity between them, suggesting that these elements form a conserved core in the PX domain fold. These similarities and the observation that a putative PtdIns(3)P binding site is already formed in the apo Vam7p PX domains suggest that ligand binding does not induce major conformational changes, contrary to what was previously thought. The proposed ligand binding site of the Vam7p PX domain includes basic side chains from the conserved structural core that also participate in PtdIns(3)P binding to the p40(phox) PX domain, and basic side chains from a variable loop that probably inserts into the membrane. These results indicate that PX domains contain a combination of conserved and variable features that allow them to have a common function and at the same time exhibit distinct specificities, mechanisms of regulation, or modes of interaction with effector molecules.  相似文献   

15.
Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo   总被引:2,自引:0,他引:2  
Ubc7p is a ubiquitin-conjugating enzyme (E2) that functions with endoplasmic reticulum (ER)-resident ubiquitin ligases (E3s) to promote endoplasmic reticulum-associated degradation (ERAD). Ubc7p only functions in ERAD if bound to the ER surface by Cue1p, a membrane-anchored ER protein. The role of Cue1p was thought to involve passive concentration of Ubc7p at the surface of the ER. However, our biochemical studies of Ubc7p suggested that Cue1p may, in addition, stimulate Ubc7p E2 activity. We have tested this idea and found it to be true both in vitro and in vivo. Ubc7p bound to the soluble domain of Cue1p showed strongly enhanced in vitro ubiquitination activity, both in the presence and absence of E3. Cue1p also enhanced Ubc7p function in vivo, and this activation was separable from the established ER-anchoring role of Cue1p. Finally, we tested in vivo activation of Ubc7p by Cue1p in an assay independent of the ER membrane and ERAD. A chimeric E2 linking Ubc7p to the Cdc34p/Ubc3p localization domain complemented the cdc34-2 TS phenotype, and co-expression of the soluble Cue1p domain enhanced complementation by this chimeric Ubc7p E2. These studies reveal a previously unobserved stimulation of Ubc7p E2 activity by Cue1p that is critical for full ERAD and that functions independently of the well known Cue1p anchoring function. Moreover, it suggests a previously unappreciated mode for regulation of E2s by Cue1p-like interacting partners.  相似文献   

16.
The dic(7;9)(p11 approximately 13;p11 approximately 13) is a recurrent chromosomal abnormality in acute lymphoblastic leukemia (ALL), mainly of B-lineage. Although more than 20 dic(7;9)-positive ALLs have been reported to date, the molecular genetic consequences of this aberration are unknown. We performed tiling resolution (32K) genome-wide array-based comparative genomic hybridization (array CGH) analysis of three cases with dic(7;9) in order to characterize the breakpoints on 7p and 9p. The analysis showed a clustering of breakpoints within 9p13.1 in all three cases and within 7p11.2 in two cases; the array CGH revealed two different breakpoints - 7p12.1 and 7p14.1 - in the remaining case. Based on these findings the abnormality should hence be designated dic(7;9)(p11.2 approximately 12.1;p13.1). Locus-specific fluorescence in situhybridization analysis of one of the cases narrowed down the 7p11.2 breakpoint to a <500-kb segment in this sub-band, a region containing three known genes. Unfortunately, lack of material precluded further molecular genetic studies, and it thus remains unknown whether the pathogenetically important outcome of the dic(7;9) is formation of a chimeric gene or loss of 7p and/or 9p material.  相似文献   

17.
We report, a newborn presenting multiple congenital abnormalities with karyotype; 47,XY,der(7)t(6;7)(pter-p23::p15-->qter),+der(9)t(7;9)(pter-->p15::q21.2--> pter)t(6;7;9)(p23;p15;q21.2)mat[20]. The mother and her phenotypically normal daughter were carriers of a complex chromosomal rearrangement with karyotypes; 46,XX,t(6;7;9)(p23;p15;q21.2)[20]. Paternal chromosomes were normal. In our case the extra derivative chromosome was the result of a 4:2 segregation of the chromosomes involved in translocation during oogenesis. Double partial trisomy in newborns resulting from 4:2 segregation is a rare event, and double partial trisomies of the 6p23-pter and trisomy 9pter-q22 regions have not reported to date.  相似文献   

18.
Aut7p, a protein recently implicated in autophagic events in the yeast Saccharomyces cerevisiae, exhibits significant homology to a mammalian protein, p16, herein termed GATE-16 (Golgi-associated ATPase Enhancer of 16 kDa), a novel intra-Golgi transport factor. Here we provide evidence for the involvement of Aut7p in different membrane trafficking processes. Aut7p largely substitutes for the activity of GATE-16 in mammalian intra-Golgi transport in vitro. In vivo, AUT7 interacts genetically with endoplasmic reticulum to Golgi SNAREs, specifically with BET1 and SEC22. Aut7p interacts physically with the following two v-SNAREs: Bet1p, which is involved in endoplasmic reticulum to Golgi vesicular transport, and Nyv1p, implicated in vacuolar inheritance. We suggest that, in addition to its role in autophagocytosis, Aut7p has pleiotropic effects and participates in at least two membrane traffic events.  相似文献   

19.
Pan1p plays essential roles in both actin and endocytosis in yeast. It interacts with, and regulates the function of, multiple endocytic proteins and actin assembly machinery. Phosphorylation of Pan1p by the kinase Prk1p down-regulates its activity, resulting in disassembly of the endocytic vesicle coat complex and termination of vesicle-associated actin polymerization. In this study, we focus on the mechanism that acts to release Pan1p from phosphorylation inhibition. We show that Pan1p is dephosphorylated by the phosphatase Glc7p, and the dephosphorylation is dependent on the Glc7p-targeting protein Scd5p, which itself is a phosphorylation target of Prk1p. Scd5p links Glc7p to Pan1p in two ways: directly by interacting with Pan1p and indirectly by interacting with the Pan1p-binding protein End3p. Depletion of Glc7p from the cells causes defects in cell growth, actin organization, and endocytosis, all of which can be partially suppressed by deletion of the PRK1 gene. These results suggest that Glc7p antagonizes the activity of the Prk1p kinase in regulating the functions of Pan1p and possibly other actin- and endocytosis-related proteins.  相似文献   

20.
Johnson  George  Bachman  Ronald  Roed  Terry  Riddervold  Peggy 《Human genetics》1977,35(3):353-356
Summary A girl with partial trisomy for the short arm of chromosome 10(p12pter) due to mal chromosome segregation in the father 46,XY,t(7;10)(p22;p12) is described. The major abnormalities in this case are: mottled skin, mid-facial hypoplasia, low percentiles for weight, length, and head circumference, and club feet.To whom offprint requests should be sent  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号