共查询到20条相似文献,搜索用时 0 毫秒
1.
Radiopharmaceuticals for assessment of multidrug resistance P-glycoprotein-mediated drug transport activity 总被引:3,自引:0,他引:3
Sharma V 《Bioconjugate chemistry》2004,15(6):1464-1474
Multidrug resistance (MDR) mediated by overexpression of MDR1 P-glycoprotein (Pgp) is one of the best characterized transporter-mediated barriers to successful chemotherapy in cancer patients. Thus, noninvasive interrogation of Pgp-mediated transport activity in vivo would be beneficial in guiding therapeutic choices. Both small organic medicinals as well as metal complexes characterized as transport substrates for Pgp are amenable to incorporation of PET or SPECT radionuclides and may enable noninvasive imaging of Pgp in cancer patients. Toward this objective, clinically approved agents, exemplified by (99m)Tc-Sestamibi and (99m)Tetrofosmin, have already shown promise for the functional evaluation of Pgp-mediated transport activity in human tumors in vivo. In addition, selected agents from an upcoming class of substituted Schiff-base gallium(III) complexes containing an N(4)O(2) donor core in their organic scaffold and capable of generating both SPECT and PET radiopharmaceuticals have also been shown to be promising for noninvasive assessment of Pgp activity in vitro and in vivo. 相似文献
2.
Yang Gao Wei Shi Jian Cui Chunxia Liu Xinzhou Bi Zhuo Li Wenlong Huang Guangji Wang Hai Qian 《Bioorganic & medicinal chemistry》2018,26(9):2420-2427
Multidrug resistance (MDR) is one of the main obstacles of clinical chemotherapy. A great deal of research shows that the occurrence of drug resistance in various malignant tumors is closely related to the expression of P-glycoprotein (P-gp) on the surface of the cell membrane. In this paper, based on the structure-activity relationship of phenylethyl tetrahydroisoquinoline, we choose tariquidar as the lead compound for the design and synthesis of 17 novel tetrahydroisoquinoline P-gp inhibitors. Additionally, in vitro and in vivo cytotoxicity assays and reversed MDR activity assays were evaluated. Among them, compound 3 had a good reversal of MDR activity and the reversal mechanism study of it was carried out. All of these results demonstrated that compound 3 was considered to be a promising P-gp-mediated MDR reversal candidate. 相似文献
3.
《Bioorganic & medicinal chemistry》2016,24(10):2287-2297
A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50 >100 μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. 相似文献
4.
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major impediment for clinical cancer therapy. 19 novel aromatic amides with triazole-core as MDR reversal agents were designed and synthesized via click chemistry to reverse MDR. Among them, compound 42 was identified as the most promising candidate with high potency (EC50 = 78.1 ± 5.4 nM), low cytotoxity (SI > 1282) and persistent duration in reversing doxorubicin (DOX) resistance in K562/A02 cells. 42 also enhanced the potency of other P-gp associated cytotoxic agents with different structures. In further study, remarkably increased intracellular accumulation of Rh123 and DOX in K562/A02 cells was achieved by compound 42, while CYP3A4 activity had no change by compound 42. These results indicate that compound 42 as a relatively safe modulator of P-gp-mediated MDR has good potential for further development. 相似文献
5.
Verapamil metabolites: potential P-glycoprotein-mediated multidrug resistance reversal agents 总被引:2,自引:0,他引:2
Woodland C Koren G Wainer IW Batist G Ito S 《Canadian journal of physiology and pharmacology》2003,81(8):800-805
Multidrug resistance in cancer chemotherapy frequently correlates with overexpression of the P-glycoprotein drug transporter. Attempts to reverse P-glycoprotein-mediated multidrug resistance with racemic verapamil or its less toxic (R)-enantiomer have been complicated by cardiotoxicity. The objective of this study was to investigate the effects of the major verapamil metabolite, norverapamil, as well as the PR-22 and D-620 metabolites, on P-glycoprotein-mediated drug transport. We measured the basolateral-to-apical fluxes of the P-glycoprotein substrates digoxin and vinblastine in the presence and absence of verapamil, (R)-norverapamil, (S)-norverapamil, racemic norverapamil, PR-22, or D-620 across confluent monolayers of Madin-Darby canine kidney (MDCK) cells that express P-glycoprotein on their apical membranes. Verapamil and norverapamil nonstereospecifically inhibited the renal tubular secretion of digoxin and vinblastine similarly in a dose-dependent manner. However, there was no decrease in the cellular accumulation of digoxin and vinblastine, suggesting that neither verapamil nor norverapamil prevent the substrates from entering the MDCK cells. Furthermore, the norverapamil metabolite P-22 also inhibited the secretion of these P-glycoprotein substrates. Our results suggest that the verapamil metabolites norverapamil and PR-22, which are less cardiotoxic than the parent compound, have comparable inhibitory abilities to verapamil (norverapamil greater than PR-22) and may be useful in reversing resistance to P-glycoprotein substrates. 相似文献
6.
7.
Nuclear transport as an ultimate step of multidrug resistance 总被引:2,自引:0,他引:2
Adriamycin (ADM) incorporation into nuclei of whole multidrug resistant (MDR) CEM cells is lower than into sensitive ones (S), that is mostly thought to be the consequence of a decrease of drug related to the activity of the multidrug resistance plasma membrane protein P 170. Isolated nuclei of the lymphoblastic tumor cell line CEM, which structures were controlled by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal microscopy, where incubated with 10(-6) mole/l of ADM. Incorporation into DNA was quantified by spectrofluorimetry. It was lower and slower into MDR nuclei than into S ones. Different modulators of active transport influence drug transfer into S nuclei and had no effect in MDR nuclei. The nuclear transfer into S nuclei appeared divided into two components: one was decreased by WGA, increased by cytosolic factors and an other part was purely passive in an identical intensity to MDR nuclei. Resistance of MDR nuclei seemed indebt to a defect, in these cells, of factors that mediate and/or activate nuclear transport of drug. 相似文献
8.
W Zeinyeh Z Mahiout S Radix T Lomberget A Dumoulin R Barret C Grenot L Rocheblave EL Matera C Dumontet N Walchshofer 《Steroids》2012,77(12):1177-1191
Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton. 相似文献
9.
Qiying Shen 《Journal of liposome research》2017,27(4):293-301
Multidrug resistance (MDR) is a major obstacle to successful clinical cancer chemotherapy. Currently, there is still unsatisfactory demand for innovative strategies as well as effective and safe reversing agent to overcome MDR. In this study, we developed a novel nanoformulation, in which doxorubicin hydrochloride (DOX) and quinine hydrochloride (QN) were simultaneously loaded into liposomes by a pH-gradient method for overcoming MDR and enhancing cytotoxicity in a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR). The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and QN co-loaded liposomes (DQLs). The DQL showed uniform size distribution and high encapsulation efficiency (over 90%) for both the drugs. Furthermore, DQLs significantly displayed high intracellular accumulation and potential of MDR reversal capability in MCF-7/ADR cells through the cooperation of DOX with QN, in which QN played the role as a MDR reversing agent. The IC50 of DQL0.5:1 with the DOX/QN/SPC weight ratio of 0.5:1:50 was 1.80?±?0.03?μg/mL, which was 14.23 times lower than that of free DOX in MCF-7/ADR cells. And the apoptotic percentage induced by DQL0.5:1 was also increased to 62.2%. These findings suggest that DQLs have great potential for effective treatment of MDR cancer. 相似文献
10.
《Bioorganic & medicinal chemistry》2014,22(24):6857-6866
A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80 μM) and K562/A02 cells (IC50 >80 μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development. 相似文献
11.
Tang X Gu X Ren Z Ma Y Lai Y Peng H Peng S Zhang Y 《Bioorganic & medicinal chemistry letters》2012,22(8):2675-2680
A series of substituted dibenzo[c,e]azepine-5-ones (7a-h) were synthesized and evaluated as P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal agents. The most potent compound 7h could significantly and selectively enhance the chemo-sensitivity of drug-resistant K562/A02 cells to the cytotoxic effect of adriamycin (ADR) in a dose-dependent manner. Further studies indicated that 7h could markedly increase intracellular accumulation of both rhodamine 123 and ADR in K562/A02 cells and inhibit their efflux from the cells. And 7h had little effect on the levels of P-gp mRNA and protein in K562/A02 cells. These results suggest that the anti-MDR effect of 7h might be attributed to the inhibition of drug efflux function of P-gp, leading to the increased drug accumulation in K562/A02 cells, and thus the compound could be served as a lead for developing P-gp-mediated MDR reversal agents. 相似文献
12.
Choi CH Sun KH An CS Yoo JC Hahm KS Lee IH Sohng JK Kim YC 《Biochemical and biophysical research communications》2002,292(4):832-840
Vif, one of the six accessory genes expressed by HIV-1, is essential for the productive infection of natural target cells. Previously we suggested that Vif acts as a regulator of the viral protease (PR): It prevents the autoprocessing of Gag and Gag-Pol precursors until virus assembly, and it may control the PR activity in the preintegration complex at the early stage of infection. It was demonstrated before that Vif, and specifically the 98 amino acid stretch residing at the N'-terminal part of Vif (N'-Vif), inhibits both the autoprocessing of truncated Gag-Pol polyproteins in bacterial cells and the hydrolysis of synthetic peptides by PR in cell-free systems. Linear synthetic peptides derived from N'-Vif specifically inhibit and bind HIV-1 PR in vitro, and arrest virus production in tissue culture. Peptide mapping of N'-Vif revealed that Vif88-98 is the most potent PR inhibitor. Here we report that this peptide inhibits both HIV-1 and HIV-2, but not ASLV proteases in vitro. Vif88-98 retains its inhibitory effect against drug-resistant HIV-1 PR variants, isolated from patients undergoing long-term treatment with anti-PR drugs. Variants of HIV protease bearing the mutation G48V are resistant to inhibition by this Vif-derived peptide, as shown by in vitro assays. In agreement with the in vitro experiments, Vif88-98 has no effect on the production of infectious particles in cells infected with a G48V mutated virus. 相似文献
13.
Bois F Boumendjel A Mariotte AM Conseil G Di Petro A 《Bioorganic & medicinal chemistry》1999,7(12):84-2695
A series of 4-alkoxy-2′,4′,6′-trihydroxychalcones have been synthesized and evaluated for their ability to inhibit P-glycoprotein-mediated multidrug resistance (MDR) by direct binding to a purified protein domain containing an ATP-binding site and a modulator-interacting region. The introduction of hydrophobic alkoxy goups at position 4 led to much more active compounds as compared to the parent chalcone. The binding affinity increased as a function of the chain length, up to the octyloxy derivative for which a KD of 20 nM was obtained. 相似文献
14.
Studies on quinazolinones as dual inhibitors of Pgp and MRP1 in multidrug resistance 总被引:1,自引:0,他引:1
Wang S Ryder H Pretswell I Depledge P Milton J Hancox TC Dale I Dangerfield W Charlton P Faint R Dodd R Hassan S 《Bioorganic & medicinal chemistry letters》2002,12(4):571-574
The syntheses and SAR studies of various quinazolinone compounds are described for the dual inhibition of Pgp and MRP1 in multidrug resistance. 相似文献
15.
Villar VH Vögler O Martínez-Serra J Ramos R Calabuig-Fariñas S Gutiérrez A Barceló F Martín-Broto J Alemany R 《PloS one》2012,7(5):e37735
The therapeutic effect of doxorubicin (DXR) in the treatment of soft tissue sarcomas (STS) is limited by its toxicity and the development of multidrug resistance (MDR), the latter mainly induced by high expression of efflux pumps (e.g., P-glycoprotein [P-gp]). Therefore, the search for alternative therapies, which sensitize these tumors to chemotherapy while maintaining a low toxicity profile, is a rational approach. We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of the tyrosine kinase inhibitors, nilotinib and imatinib, as single agents or in combination with DXR, in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound nilotinib (1-10 μM) was more potent than imatinib inhibiting the growth of SK-UT-1 and SW982 cells by 33.5-59.6%, respectively. Importantly, only nilotinib synergized the antitumoral effect of DXR (0.05-0.5 μM) by at least 2-fold, which clearly surpassed the mere sum of effects according to isobolographic analysis. Moreover, nilotinib in combination with DXR had a sustained effect on cell number (-70.3±5.8%) even 12 days after withdrawal of drugs compared to DXR alone. On the molecular level, only nilotinib fully blocked FBS-induced ERK1 and p38 MAPK activation, hence, reducing basal and DXR-induced up-regulation of P-gp levels. Moreover, efflux activity of the MDR-related proteins P-gp and MRP-1 was inhibited, altogether resulting in intracellular DXR retention. In high-risk STS tumors 53.8% and 15.4% were positive for P-gp and MRP-1 expression, respectively, with high incidence of P-gp in synovial sarcoma (72.7%). In summary, nilotinib exhibits antiproliferative effects on cellular models of STS and sensitizes them to DXR by reverting DXR-induced P-gp-mediated MDR and inhibiting MRP-1 activity, leading to a synergistic effect with potential for clinical treatment. 相似文献
16.
The drug concentration inside multidrug-resistant cells is the outcome of competition between the active export of drugs by drug efflux pumps, such as P-glycoprotein (Pgp), and the passive permeation of drugs across the plasma membrane. Thus, reversal of multidrug resistance (MDR) can occur either by inhibition of the efflux pumps or by acceleration of the drug permeation. Among the hundreds of established modulators of Pgp-mediated MDR, there are numerous surface-active agents potentially capable of accelerating drug transbilayer movement. The aim of the present study was to determine whether these agents modulate MDR by interfering with the active efflux of drugs or by allowing for accelerated passive permeation across the plasma membrane. Whereas Pluronic P85, Tween-20, Triton X-100 and Cremophor EL modulated MDR by inhibition of Pgp-mediated efflux, with no appreciable effect on transbilayer movement of drugs, the anesthetics chloroform, benzyl alcohol, diethyl ether and propofol modulated MDR by accelerating transbilayer movement of drugs, with no concomitant inhibition of Pgp-mediated efflux. At higher concentrations than those required for modulation, the anesthetics accelerated the passive permeation to such an extent that it was not possible to estimate Pgp activity. The capacity of the surface-active agents to accelerate passive drug transbilayer movement was not correlated with their fluidizing characteristics, measured as fluorescence anisotropy of 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene. This compound is located among the headgroups of the phospholipids and does not reflect the fluidity in the lipid core of the membranes where the limiting step of drug permeation, namely drug flip-flop, occurs. 相似文献
17.
The hybrid molecules having structural features of anticancer drug, 5-fluorouracil, and MDR modulator, propafenone, have been studied for their interactions with P-glycoprotein (P-gp). Some of the molecules (5, 8, and 9) show considerable interactions with P-gp and could be the potential candidates for their in vivo evaluation as MDR modulators. Further investigations show the dependence of P-gp interacting properties of these compounds on their physico-chemical parameters like logP and total polar surface area. 相似文献
18.
The hybrid molecules have been designed on the basis of the structural features of pyrazole-based drugs and MDR modulator propafenone. A simple synthetic strategy and solvent-based regioselectivity have been used for the synthesis of newly designed molecules and they are evaluated for their interactions with P-glycoprotein (P-gp). Some of the molecules show considerable interactions with P-gp and compounds 15, 28 and 40 could be the potential candidates for their use as MDR modulators. 相似文献
19.
Okombi S Rival D Bonnet S Mariotte AM Perrier E Boumendjel A 《Bioorganic & medicinal chemistry letters》2006,16(8):2252-2255
Melanin play a major role in human skin protection and their biosynthesis is vital. Due to their color, they contribute to the skin pigmentation. Tyrosinase is a key enzyme involved in the first stage of melanin synthesis, catalyzing the transformation of tyrosine to l-dopaquinone. The aim of the present study was to study molecules able to inhibit melanin synthesis through inhibition of tyrosinase and their potential use in treating pigmentation-related disorders. We targeted amides obtained from coupling p-hydroxycinnamic acid derivatives with phenylalkylamines. The biological activity was evaluated on human melanocytes by an assay which measures tyrosine-catalyzed L-Dopa oxidation. The most active amides were: trans-N-caffeoyltyramine, N-dihydrocaffeoyltyramine, and trans-N-dihydro-p-hydroxycinnamoyltyramine which induce complete inhibition at 0.1mM. At the latter concentration, kojic acid, which was used as the reference inhibitor, was inactive. 相似文献
20.
Six analogues of geranyl pyrophosphate (the monophosphates of geraniol and tetrahydrogeraniol, and the pyrophosphates of nerol, octan-1-ol, tetrahydrogeraniol and citronellol) were synthesized, and were found to be inhibitors of pig liver prenyl- (geranyl-)transferase. The effects of each analogue were analysed in kinetic experiments, which showed the pyrophosphates of citronellol, tetrahydrogeraniol and octan-1-ol to be the most potent inhibitors. The results are interpreted to support a previous hypothesis that the main forces in the binding of substrates to prenyltransferase are non-specific lipophilic forces and a pyrophosphate-binding force. 相似文献