首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sucrose-phosphate synthase (SPS) from leaves of spinach (Spinacia oleracea L.) has been purified to homogeneity by a procedure involving precipitation with polyethylenglycol and chromatography over diethylaminoethylcellulose, Ω-aminohexylagarose, Mono Q and Blue Affinity columns. The purification factor was 838 and the final specific activity was 1.3 nkat · (mg protein)?1. On denaturing gels the major polypeptide was 120 kDa but there was also a variable amount of smaller polypeptides in the range of 90 to 110 kDa. A new activity stain was developed to allow visualization of SPS in gels. The holoenzyme had a molecular weight of about 240 and 480 kDa in native gels and Sepharose, respectively. A high-titre polyclonal antibody was obtained which reacted with SPS from other species including wheat, potato, banana and maize. Screening of a spinach-leaf cDNA-expression library with the antibody allowed the isolation of a full-length clone. Sequencing revealed a predicted molecular weight of 117649 Da, and considerable homology with the recently published sequence for maize leaf (Worrell et al. 1991, Plant Cell 3, 1121–1130). Expression of the spinach-leaf SPS gene in Escherichia coli resulted in biological activity, revealed by the presence of SPS activity in extracts and the accumulation of sucrose-6-phosphate and sucrose in the bacteria.  相似文献   

2.
3.
Immunohistological analyses for rice ( Oryza sativa ) sucrose-phosphate synthase (SPS, UDP-glucose d -fructose-6-phosphate-2-glucosyltransferase, EC 2.4.1.14) show that the protein is differently localized in photosynthetic and etiolated leaves. Very little is known about SPS regulation in heterotrophic tissues; therefore, we studied the biochemical properties of the enzyme from etiolated seedlings and embryo. Two SPS forms (SPS-1 and SPS-2) were partially purified from etiolated seedlings. The effects of Glc-6-P (activator) and Pi (inhibitor) on SPS activities allowed us to differentiate the two forms. SPS-1 showed high sensitivity to Pi which also strongly decreased enzyme activation by Glc-6-P. SPS-2 was highly activated by Glc-6-P and showed low sensitivity to Pi. In vitro alkaline phosphatase treatment suggested that SPS-1 could be regulated as leaf SPS in darkness and that SPS-2 is present in a dephosphorylated state or is not regulated by protein phosphorylation. The relative MM value (116 kDa) estimated for both SPS forms in SDS-PAGE is identical to the rice leaf SPS polypeptide. Taken together, these data led us to conclude that SPS-2 is an enzyme form only present in non-photosynthetic tissues.  相似文献   

4.
A dot-blot technique was developed using monoclonal antibodies to measure, rapidly and accurately, the amount of sucrose-phosphate synthase (SPS; EC 2.4.1.14) protein present in a crude extract from spinach (Spinacia oleracea L. cv. Dark Green Bloomsdale) leaves; this was compared with SPS activity in this material. During leaf development, increased SPS activity followed closely the increase in enzyme-protein level, indicating denovo synthesis or altered turn-over rates for SPS. In contrast, activation of SPS by illumination of leaves or by mannose treatment of leaf discs in the dark (M. Stitt et al. Planta 174, 217–230) occurred without a significant change in the level of enzyme protein. Since conditions which altered SPS activity did not affect immunoprecipitation or mobility of the 120-kilodalton (kDa) subunit of the enzyme during denaturing gel electrophoresis, some form of protein modification other than proteolysis must be involved. Overall, the results indicate that regulation of SPS activity can involve changes in the level of enzyme protein and-or covalent modification.Abbreviations kDa kilodalton - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - SPS sucrosephosphate synthase Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Reseach Service, Raleigh. Paper No. 11789 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA  相似文献   

5.
Monoclonal antibodies specific for sucrose phosphate synthase (SPS; EC 2.4.1.14) have been obtained for the first time. Three independent clones have been isolated which inhibited spinach (Spinacia oleracea L.) leaf SPS activity and facilitated the enzyme purification by immunoprecipitation. All three clones were specific for the spinach enzyme but neither inhibited nor precipitated the SPS present in tissue extracts of maize (Zea mays L.), barley (Hordeum vulgare L.), soybean (Glycine max L.), and sugar beet (Beta vulgaris L.). The inhibition of SPS activity by all three clones was reversible in the presence of UDPG, suggesting the presence of an epitope at the substrate-binding site. Immunoprecipitates of active enzyme preparations consistently revealed the presence of a 120 kilodalton polypeptide, indicating that the enzyme may be a homotetramer with a native molecular weight of about 480 kilodaltons. The occasional appearance of a 52 kilodalton polypeptide in the immunoprecipitates of some enzyme preparations was not the result of proteolysis, was not necessary for enzyme activity, and did not contain an antigenic site as revealed by Western blotting experiments. All three antibodies bind weakly to the SDS denatured 120 kilodalton subunit bound to nitrocellulose. The specific activity of the purified spinach enzyme was determined for the first time to be approximately 150 units per milligram SPS protein (pH 7.5 and 25°C) based on quantitative immunoprecipitation of the enzyme.  相似文献   

6.
Barley (Hordeum vulgare) β-galactosidase is composed of a large (45 kDa) and a small (33 kDa) polypeptide. N-terminal sequencing of the polypeptides and antibody reactivity data place the barley enzyme and heterodimeric plant β-galactosidases from jack bean, maize, and wheat in family 35 of the glycosyl hydrolases. Sequence analysis indicates the existence of a subfamily of genes coding for polypeptide precursors that are cleaved to produce the two subunits in heterodimeric β-galactosidases. The heterogeneity of the barley holoenzyme is related, but not restricted, to the N-glycosylation of the small polypeptide. Both polypeptides are essential for the catalytic activity of the enzyme.  相似文献   

7.
Weiner H 《Plant physiology》1995,108(1):219-225
Serum antibodies were raised against a synthetic peptide corresponding to the amino acid sequence surrounding the major inactivating phosphorylation site (serine-158) of spinach (Spinacia oleracea) leaf sucrose-phosphate synthase (SPS). The anti-peptide antibodies precipitated highly activated SPS preferentially to ATP-inactivated SPS and interacted only weakly with the sodium dodecyl sulfate-denatured enzyme bound to a membrane. The antibodies blocked phosphorylation but not dephosphorylation of SPS. Highly activated SPS was not entirely dephosphorylated and ATP-inactivated SPS was not completely phosphorylated on serine-158, as indicated by the sensitivities of immunopurified serine-158 phospho- and dephospho-SPS to inhibition by inorganic phosphate. The anti-peptide antibodies can be used to detect changes in the phosphorylation state of serine-158, and they are useful to purify and characterize distinct kinetic forms of SPS.  相似文献   

8.
We showed previously that wheat germ extracts contain two forms of protein synthesis initiation factor 4F that have very similar functional properties (Browning, K. S., Lax, S. R., and Ravel, J. M. (1987) J. Biol. Chem. 262, 11228-11232). One form, designated eIF-4F, is a complex containing two subunits, p220 and p26. The other form, designated eIF-(iso)4F, is a complex containing two subunits, p82 and p28, which are antigenically distinct from the subunits of eIF-4F. Both the p26 subunit of eIF-4F and the p28 subunit of eIF-(iso)4F are m7G cap-binding proteins. In this investigation, affinity-purified antibodies to the p220 and p26 subunits of wheat germ eIF-4F and to the p82 and p28 subunits of wheat germ eIF-(iso)4F were used to determine if isozyme forms of eIF-4F are present in maize and cauliflower. Extracts from wheat germ, maize root tips, and cauliflower inflorescences were partially purified by adsorption on m7GTP-Sepharose and elution with m7GTP (MGS eluate). Analysis by sodium dodecyl sulfate gel electrophoresis and immunoblotting with antibodies to the subunits of the wheat germ factors showed that the MGS eluate from maize contains polypeptides that react with antibodies to the p82 and p28 subunits of wheat eIF-(iso)4F, as well as polypeptides that react with antibodies to the p220 and p26 subunits of wheat eIF-4F. The MGS eluate from cauliflower also contains polypeptides that reacted with antibodies to the subunits of wheat eIF-(iso)4F. These results indicate that both maize and cauliflower contain the isozyme form of eIF-4F. In addition, it was found that the factors in the MGS eluate from maize support polypeptide synthesis in a system from wheat deficient in eIF-4F and eIF-(iso)4F, whereas the factors in the MGS eluate from cauliflower support polypeptide synthesis only to a small extent.  相似文献   

9.
Constitutive over-expression of a maize sucrose-phosphate synthase (SPS) gene in tobacco (Nicotiana tabacum) had major effects on leaf carbohydrate budgets with consequences for whole plant development. Transgenic tobacco plants flowered earlier and had greater flower numbers than wild-type plants. These changes were not linked to modified source leaf carbon assimilation or carbon export, although sucrose to starch ratios were significantly higher in leaves expressing the transgene. The youngest and oldest leaves of plants over-expressing SPS had up to 10-fold wild-type maximal extractable SPS activity, but source leaf SPS activities were only 2-3 times greater in these lines than in the wild type. In the oldest leaves, where the expression of the transgene led to the most marked enhancement in SPS activity, photosynthesis was also increased. It was concluded that these increases in the capacity for sucrose synthesis and carbon assimilation, particularly in older leaves, accelerate the whole plant development and increase the abundance of flowers without substantial changes in the overall shoot biomass.  相似文献   

10.
Studies were conducted to determine the potential for regulationof maize leaf sucrose-phosphate synthase (SPS) by protein phosphorylation.Highly activated enzyme, in desalted crude leaf extracts preparedfrom illuminated leaves, was inactivated in vitro in a time-and ATP-de-pendent manner. Partial purification of SPS by polyethyleneglycol fractionation and Mono Q chromatography yielded enzymethat was not ATP-inactivated, possibly due to elimination ofcontaminating protein kinase. We used the partially purifiedSPS as substrate to identify an endogenous protein kinase. Theprotein kinase catalyzed the time- and ATP-dependent inacti-vationof SPS, and the apparent Km for Mg-ATP was estimated to be approximately10µM. The partially purified maize SPS protein was phosphorylatedin vitro using [y-32P]ATP and either the endogenous proteinkinase or the catalytic subunit of cAMP-dependent protein kinase.The incorporation of radiolabel was closely paralleled by inactivationof the enzyme. These results provide the first evidence forregulation of maize leaf SPS by protein phosphorylation, whichwe postulate is the mechanism of light-dark regulation in vivo. (Received October 23, 1990; Accepted January 7, 1991)  相似文献   

11.
The expression of a sucrose-phosphate synthase (SPS) gene from maize (Zea mays, a monocotyledon) in tomato (Lycopersicon esculentum, a dicotyledon) resulted in marked increases in extractable SPS activity in the light and the dark. Diurnal modulation of the native tomato SPS activity was found. However, when the maize enzyme was present the tomato leaf cells were unable to regulate its activation state. No detrimental effects were observed and total dry matter production was unchanged. However, carbon allocation within the plants was modified such that in shoots it increased, whereas in roots it decreased. There was, therefore, a change in the shoot:root dry weight ratio favoring the shoot. This was positively correlated with increased SPS activity in leaves. SPS was a major determinant of the amount of starch in leaves as well as sucrose. There was a strong positive correlation between the ratio of sucrose to starch and SPS activity in leaves. Therefore, SPS activity is a major determinant of the partitioning of photosynthetically fixed carbon in the leaf and in the whole plant. The photosynthetic rate in air was not significantly increased as a result of elevated leaf SPS activity. However, the light- and CO2-saturated rate of photosynthesis was increased by about 20% in leaves expressing high SPS. In addition, the temporary enhancement of the photosynthetic rate following brief exposures to low light was increased in the high SPS plants relative to controls. We conclude that the level of SPS in the leaves plays a pivotal role in carbon partitioning. Furthermore, high SPS levels have the potential to boost photosynthetic rates under favorable conditions.  相似文献   

12.
The presence of sucrose synthesizing and degrading enzymes and the correlation of their enzyme activity with cambial growth and heartwood formation are demonstrated in trunks of Robinia pseudoacacia L., black locust. Sucrose is formed by sucrose-phosphate synthase (SPS; EC 2.4.1.14), predominantly in the storage part of the sapwood. In the cambial differentiation zone and the sapwood-heartwood transition zone, both of which constitute carbohydrate sinks, sucrose is primarily cleaved by sucrose synthase (SuSy; EC 2.4.1.13) and a neutral invertase (NI; EC 3.2.1.26). In spring, enhanced activities of SuSy and NI were found in the differentiating xylem tissues. This coincided with elevated SPS rates at the sites of starch mobilization. Heartwood formation in autumn, a period of intense accumulation of phenolics in the innermost living wood tissues, was accompanied by high activities of SuSy and NI. Increased SPS and NI activities in all tissues of winter samples could be correlated with cold acclimation. Probing of SPS and SuSy protein from black locust with heterologous antibodies revealed a subunit size of 130 kDa for SPS and of 89 kDa for SuSy. Both SPS and SuSy exhibited a linear correlation between catalytic activity and amount of enzyme protein with respect to the radial profile from bark to inner core and with respect to the seasonal course. The highest amounts of SuSy-specific mRNA were detected in differentiating xylem in summer and the sapwood-heartwood transition zone in autumn. These data are taken as evidence for a pivotal role of SuSy in supplying carbon skeletons for the biosynthesis of secondary substances in woody axes. Received: 6 May 1998 / Accepted: 28 July 1998  相似文献   

13.
The presence of specific glycine-rich proteins (GRP) related to petunia GRP1 (ptGRP1) was examined in three species of monocots (wheat, barley and maize) and five species of dicots (rape, turnip, soybean, crabapple and tomato). Protein blot analysis showed that anti-ptGRP1 antibody cross-reacted with a single different polypeptide in all species except maize. The molecular mass of these polypeptides ranged from 14 to 55 kDa. Tissue-print immunoblots of rape petioles and stems showed that the rape ptGRP1 homologue, like ptGRP1, is primarily located in the vascular tissue, and that its expression decreases with developmental age of the tissue. In barley, the ptGRP1 homologue is found in leaf vascular bundles, and may also be present in the surrounding bundle sheaths. Unlike the dicots examined, expression of the protein did not appear to decrease significantly with developmental age.  相似文献   

14.
15.
To investigate the role of Ser162 in phosphorylation-dependent regulation of maize sucrose-phosphate synthase (SPS) activities in rice, transgenic rice plants expressing wild-type or mutagenized maize SPS were produced. Our results indicate that Ser162 was responsible for overproduction-induced inactivation of SPS protein and for light/ dark modulation of this protein in vivo.  相似文献   

16.
The presence of legumin-like constituents within the globulin fractions of wheat (Triticum aestivum), rye (Secale cereale) and corn (maize, Zea mays) was demonstrated. Two-dimensional analysis of wheat globulins in the presence and absence of a reducing agent revealed the existence of reducible approximately 60 kDa polypeptides. Western-blot analysis with 125I-labelled antibodies raised against the oat (Avena sativa) 12S globulin holoprotein or its alpha-subunits demonstrated, firstly, the immunological homology between the alpha- and beta-subunits of pea (Pisum sativum) legumin and oat 12S globulin, and secondly, the similar occurrence in wheat of antigenically homologous approximately 20kDa and approximately 40 kDa polypeptides that associate via disulphide linkage to form approximately 60 kDa dimers. Western blotting also showed the presence of disulphide-linked approximately 20 kDa and approximately 40 kDa legumin-like subunits within the globulin fractions of rye and corn.  相似文献   

17.
Sucrose-phosphate synthase SPS; (EC 2.4.1.14) from maize (Zea mays L. cv. Pioneer 3184) leaves was partially purified and kinetically characterized. Maize SPS was activated by glucose-6-phosphate (G-6-P) due to an increase in Vmax and a decrease in the Km for UDP-glucose. The UDP-glucose saturation profile was biphasic; thus two Km values for UDP-glucose were calculated. Inhibition by inorganic phosphate was observed only in the presence of G-6-P. Chromatography of partially purified maize leaf extracts on hydroxyapatite resolved two forms of SPS activity, which differed in their affinity for UDP-glucose and in the degree of activation by G-6-P. SPS was partially purified from maize leaves that were harvested in the light and in the dark. The light enzyme had a higher specific activity than the enzyme isolated from dark harvested leaves, and this difference persisted during enzyme purification. The apparent molecular weight (Stokes radius) of the light enzyme was 547 kDa, which was greater than that of the dark enzyme (457 kDa). Light and dark SPS differed in their affinities for UDP-glucose in the absence G-6-P. Both the light and the dark SPS were activated by G-6-P; the Km for UDP-glucose of the light enzyme was lowered by G-6-P, while the Km for UDP-glucose for the dark enzyme remained unchanged. These results suggest that light activation involves a conformational change that results in differences in maximum velocity, substrate affinities and regulation by metabolites. Chromatography of either the light or dark SPS on hydroxyapatite yielded two peaks of enzyme activity, suggesting that the occurrence of the two activity peaks was not due to an interconversion of the light and dark forms.  相似文献   

18.
Sucrose synthesis is a major element of the interactions between photosynthesis and plant growth and development. Tomato (Lycopersicon esculentum Mill. cv. UC82B) plants transformed with maize sucrose-phosphate synthase (SPS; EC 2.3.1.14) expressed from either a ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit promoter (SSU) or the cauliflower mosaic virus 35S promoter (35S) were used to study effects of increased sucrose synthesis rates on plant growth. The plants were grown in growth chambers, field plots, and open-top chambers. The 35S plants had a 2 to 3-fold increase in young-leaf SPS activity, a 10 to 20-fold increase in young-root SPS activity and no increase in young-fruit SPS activity. The leaf SPS activity in one of the 35S lines fell to control levels by two months of age. The SSU plants had a 4 to 5-fold increase in leaf SPS activity and no significant increase in root or young-fruit SPS activity. One 35S line, which maintained high leaf SPS activity throughout development, yielded 70–80% more than controls at both normal and elevated CO2 in open-top chambers in the field and 20–30% more than controls in two additional field trials. The other 35S line and the two SSU lines either yielded less or did not differ from controls under several growth conditions. Since only one of four transformed lines showed an increase in yield, we can not yet conclude that increased leaf SPS activity leads to increased yield. However, increased leaf SPS activity appears to result in increased fruit sugar content since all three lines with increased leaf SPS usually also had increased fruit sugars. Received: 18 November 1996 / Accepted: 22 January 1997  相似文献   

19.
Two forms of sucrose-phosphate synthase (EC 2.4.1.14) were resolved from leaves of three species, maize (Zea mays L. cv. Pioneer 3184), soybean (Glycine max (L.) Merr., cv. Ransom) and spinach (Spinacia oleracea L. cv. Resistoflay) by hydroxyapatite Ultrogel chromatography, using a 75-mM (designated peak 1) and 250-mM (peak 2) K-phosphate discontinuous-gradient elution. Rechromatography of the two forms showed that they were not readily interconvertible. The distribution of activity between the two forms differed among species and changed during purification of the enzyme. Recovery of peak-1 activity was specifically lowered when maize leaf extracts were prepared in the absence of magnesium, indicating that the two forms may differ in stability. In addition, the forms of the enzyme from maize differed in the extent of glucose-6-phosphate activation. These results provide evidence for the existence of multiple forms of sucrose-phosphate synthase in leaves of different species and that the forms differ in regulatory properties.Abbreviations Fru6P fructose 6-phosphate - Glc6P glucose 6-phosphate - HAU hydroxyapatite Ultrogel - Pi inorganic phosphate - SPS sucrose-phosphate synthase - UDP uridine 5-diphosphate - UDPG uridinediphosphate glucose Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10511 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. Supported in part by USDA Competitive Research Grant No. 85-CRCR-1-1568  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号