首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for impregnating oligodendroglia in nervous tissue (monkey) fixed and preserved in formalin for many years is described. This tissue is reconditioned by placing 12 to 30μ frozen sections of it in concentrated ammonia (sp. gr. 0.90) and by washing them slowly for 24 hours with a 1 mm. stream of water. The fluid is then poured off the sections; the jar is refilled with concentrated ammonia; and washing is repeated for another 24 hours. The sections are then plunged into concentrated ammonia for 7 minutes.

After treatment in ammonia, the sections are incubated for one hour at 38oC. in Globus' 5% hydrobromic acid solution. They are washed again, in distilled water, and then impregnated in a “medium” strength ammoniacal silver carbonate solution (5 ml. of 10% AgNO3 added to 15 ml. of 5% Na2CO3. The precipitate is dissolved in concentrated ammonia and diluted to SO ml. with distilled water). Impregnation is followed by reduction in 1% formalin without agitation; fixation in 5% Na2S2O3; dehydration, and mounting in clarite.

Typical oligodendroglia (Fig. 1) were made visible by use of the method outlined in this paper.  相似文献   

2.
For many years, a variant of the silver impregnation technique of Bielchowsky has been used to study the lymph node because it clearly outlines the various structures which are usually hard to contrast with standard staining methods. Like other variants of silver impregnation, this method blackens the cell nuclei as well as the reticular fibers; however, it inhibits the impregnation of the nuclear chromatin immediately adjacent to fibers. Hence, this variant selectively darkens the lymphoid cell populations of the nodal structures which contain a loose fiber network.

To study the blood vascular network of the lymph node based on perfusion of colloidal carbon, a staining procedure was needed which would contrast nodal structures on thick sections, while allowing the carbon-filled small blood vessels to be distinguished from the impregnated coarse reticular fibers. In an attempt to adapt this variant of Bielchowsky's technique, 10, 20, 40 and 60 nm thick sections from rat nodes, fixed in a solution of Bouin-Hollande for 72 hr, were silver impregnated with serial dilutions (1:2 to 1:128) of the ammoniacal silver solution. Forty-micrometer thick sections impregnated with a 1:16 dilution of the original silver solution at 37 C and for 30 min provided the best results for the conditions.  相似文献   

3.
An aging solution of ammoniacal silver hydroxide was used to impregnate paraffin sections of formalin-fixed tissue by a procedure based on Gordon and Sweet's method (Amer. J. Path., 12: 545-51, 1936). The solution was first used when it was 1 day old, and subsequently used at 2 day intervals for a total period of 30 days. On the final using it was found that although the staining was slightly reduced in intensity, the stain was still adequate for diagnostic purposes.  相似文献   

4.
Fresh young root tips or free-hand cross sections thereof were placed in 0.002 M 8-oxyquinoline (aq.) at 10-14oC. for 3 hours. After rinsing in water 1-2 minutes, they were soaked in N HC1 at 55oC. for 25 minutes, rinsed again and squashed under a cover glass on a dry slide. Slide and cover glass were separated by placing in 70% alcohol and allowed to remain therein at least 0.5 hour after separation. Both slide and cover glass were passed through 50% and 30% alcohol to water and stained by the Feulgen procedure (without further hydrolysis) or with crystal violet after mordanting in 1% chromic acid overnight and washing in running water 3-4 hours. Dehydration and mounting in balsam completed the process. The smear on the slide was covered with a clean cover glass and the cover glass, bearing stained material, mounted separately.  相似文献   

5.
A newly devised, simple and highly reproducible method for fungal staining is reported. Grocott's method, in which methenamine-silver nitrate solution is employed, has been widely used for the staining of fungi in tissue sections, but it frequently produces heavy background staining because of sudden and progressive reaction in the methenamine-silver nitrate solution. We therefore replace the latter solution with an ammoniacal silver nitrate solution. This new method yields more consistent results in fungal staining without background staining, since the reaction time in the ammoniacal silver nitrate solution is prolonged. The present method is considered superior to Grocott's method with regard to its simplicity and reproducibility.  相似文献   

6.
A newly devised, simple and highly reproducible method for fungal staining is reported. Grocott's method, in which methenamine-silver nitrate solution is employed, has been widely used for the staining of fungi in tissue sections, but it frequently produces heavy background staining because of sudden and progressive reaction in the methenamine-silver nitrate solution. We therefore replace the latter solution with an ammoniacal silver nitrate solution. This new method yields more consistent results in fungal staining without background staining, since the reaction time in die ammoniacal silver nitrate solution is prolonged. The present method is considered superior to Grocott's method with regard to its simplicity and reproducibility.  相似文献   

7.
Techniques for impregnation with ammoniacal silver carbonate provide valuable information on all types of tissue; however, the time investment required to impregnate a few sections has limited their application. We have shortened the impregnation times by using microwaves in techniques for reticular fibers, astrocytes, nerve fibers and chromaffin cells. The results were satisfactory with markedly reduced impregnation time and elimination of nonspecific silver deposits.  相似文献   

8.
Paraffin sections are usually rehydrated before staining. It is possible to apply aqueous dye solutions without first removing the wax. Staining then occurs more slowly, and only if the embedding medium has not melted or become unduly soft after catting. To avoid this problem, sections are flattened on water no hotter than 45 C and dried overnight at 40 C. Minor technical modifications to the staining procedures are needed. Mercury deposits are removed by iodine, and a 3% solution of sodium thiosnlfate in 60% ethanol is used to remove the iodine from paraffin sections. At room temperature, progressive staining takes 10-20 tunes longer for sections in paraffin than for hydrated sections; at 45 C, this can be shortened to about three times the regular staining time. After staining, the slides are rinsed in water, air dried, dewaxed with xylene, and coverslipped in the usual way. Nuclear staining in the presence of wax was achieved with toluidine blue, O, alum-hematoxylin and Weigert's iron-hematoxylin. Eosin and van Gieson's picric acid-acid fuchsine were effective anionic counterstains. A one-step trichrome mixture containing 3 anionic dyes and phosphomolybdic acid was unsuitable for sections in wax because it Imparted colors that were nninformative and quite different from those obtained with hydrated sections. Advantages of staining in the presence of wax include economy of solvents, reduced risk of overstaining and strong adhesion of sections to slides.  相似文献   

9.
A progressive silver staining method is described, which permits microscopic examination of the sections during the staining process. After formaldehyde fixation, dehydration and embedding in paraffin or celloidin, fine fibers and synaptic endings may be demonstrated. After formaldehyde fixation and mordanting in 3% K2Cr2O7, myelinated fibers and mitochondria are specifically stained.

The unique feature of this method is, that the silver solution (0.5% protargol) is mixed with the reducing solution: 1.6% Rochelle salts, containing traces of Ag NO3, MgSO4, and K2S (U.S.P.). The sections are placed directly into this mixture, which is then warmed to 45-55° C. Sections are removed when progressive staining is completed, washed in water, dehydrated and mounted.

In the fiber stain, nerve fibers and synaptic endings are dark brown or black, and nuclear chromatin is deep brown, against a pale yellow background. When the myelin sheath procedure is followed, the fiber bundles are deep brown, and the intensity of the staining remains the same for specific tracts, aiding in their identification.  相似文献   

10.
Paraffin sections are usually rehydrated before staining. It is possible to apply aqueous dye solutions without first removing the wax. Staining then occurs more slowly, and only if the embedding medium has not melted or become unduly soft after catting. To avoid this problem, sections are flattened on water no hotter than 45 C and dried overnight at 40 C. Minor technical modifications to the staining procedures are needed. Mercury deposits are removed by iodine, and a 3% solution of sodium thiosnlfate in 60% ethanol is used to remove the iodine from paraffin sections. At room temperature, progressive staining takes 10–20 tunes longer for sections in paraffin than for hydrated sections; at 45 C, this can be shortened to about three times the regular staining time. After staining, the slides are rinsed in water, air dried, dewaxed with xylene, and coverslipped in the usual way. Nuclear staining in the presence of wax was achieved with toluidine blue, O, alum-hematoxylin and Weigert's iron-hematoxylin. Eosin and van Gieson's picric acid-acid fuchsine were effective anionic counterstains. A one-step trichrome mixture containing 3 anionic dyes and phosphomolybdic acid was unsuitable for sections in wax because it Imparted colors that were nninformative and quite different from those obtained with hydrated sections. Advantages of staining in the presence of wax include economy of solvents, reduced risk of overstaining and strong adhesion of sections to slides.  相似文献   

11.
Staining of Nervous Tissue by Protein-Silver Mixtures   总被引:1,自引:0,他引:1  
A staining method for nerves in paraffin sections is described in which an egg albumen-silver nitrate mixture is the impregnating solution. Blocks of tissue are fixed in Bouin's fixative, formol, Huber's fixative or formol-acetic-alcohol, and decalcified if necessary in Bensley's decalcifier. Sections are impregnated overnight, in the dark, at 37-56°C in a solution containing 50 ml of filtered, aqueous 0.5% dried egg albumen with 1.8-2.5 ml of 2% silver nitrate and adjusted to pH 8.2-8.3 by the addition of ammonia. The sections are then rinsed in distilled water and the silver reduced in a mixture of hydroquinone, 1 gm; anhydrous sodium sulfite, 10 gm and distilled water, 100 ml. The remainder of the process consists of washing, gold toning, fixing in 5% sodium thiosulfate, washing, dehydrating, clearing and mounting. Casein may be used as an alternative to egg albumen in the impregnating solution (0.5% casein, 50 ml; 2% silver nitrate, 1 ml). The pH value of the solution may be adjusted by a boric acid-borax buffer or ammonium hydrogen tetraborate in the place of ammonia.  相似文献   

12.
Notes or Technic     
A progressive silver staining method is described, which permits microscopic examination of the sections during the staining process. After formaldehyde fixation, dehydration and embedding in paraffin or celloidin, fine fibers and synaptic endings may be demonstrated. After formaldehyde fixation and mordanting in 3% K2Cr2O7, myelinated fibers and mitochondria are specifically stained.

The unique feature of this method is, that the silver solution (0.5% protargol) is mixed with the reducing solution: 1.6% Rochelle salts, containing traces of Ag NO3, MgSO4, and K2S (U.S.P.). The sections are placed directly into this mixture, which is then warmed to 45-55° C. Sections are removed when progressive staining is completed, washed in water, dehydrated and mounted.

In the fiber stain, nerve fibers and synaptic endings are dark brown or black, and nuclear chromatin is deep brown, against a pale yellow background. When the myelin sheath procedure is followed, the fiber bundles are deep brown, and the intensity of the staining remains the same for specific tracts, aiding in their identification.  相似文献   

13.
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

14.
《Biotechnic & histochemistry》2013,88(5-6):233-237
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

15.
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

16.
A method of tissue embedding using n-butyl methacrylate and paraffin is described. Following alcohol dehydration and infiltration with the methacrylate monomer, tissues are embedded in gelatin capsules in a mixture consisting of 3.5 g of paraffin for each 10 ml of methacrylate. Benzoyl peroxide (0.2 g for each 10 ml of monomer) is added as the catalyst and the methacrylate polymerized in a 50 C oven for 18-24 h. Following polymerization the block is trimmed and embedded in paraffin to provide a firm support during sectioning. A water trough attached to the microtome knife is essential to facilitate the handling of sections and ribbons. For serial sections a mixture of equal weights of beeswax and paraffin is used to make the sections adhere to each other. Usual staining procedures can be used since the embedding medium is readily soluble in xylene.  相似文献   

17.
A method of tissue embedding using n-butyl methacrylate and paraffin is described. Following alcohol dehydration and infiltration with the methacrylate monomer, tissues are embedded in gelatin capsules in a mixture consisting of 3.5 g of paraffin for each 10 ml of methacrylate. Benzoyl peroxide (0.2 g for each 10 ml of monomer) is added as the catalyst and the methacrylate polymerized in a 50 C oven for 18--24 h. Following polymerization the block is trimmed and embedded in paraffin to provide a firm support during sectioning. A water trough attached to the microtome knife is essential to facilitate the handling of sections and ribbons. For serial sections a mixture of equal weights of beeswax and paraffin is used to make the sections adhere to each other. Usual staining procedures can be used since the embedding medium is readily soluble in xylene.  相似文献   

18.
At a temperature of 15oC, Gonyaulax polyedra responds to short days (light ≤ 10 h) by transition to the stage of a resting cyst. At 20oC, even an lightdark (LD) cycle of 6:18 is incapable of inducing this process. In otherwise cyst-inducing conditions (15oC; 10 h of light per day), an interruption of the scotophase by 2 h of light (LDLD 8:2:2:12 or 2:2:8:12) prevented encystment. Cyst induction is, therefore, initiated by a photoperiodic mechanism rather than by light deficiency. In Gonyaulax, photoperiodism may be mediated by the action of indoleamines. Melatonin, which exhibits a circadian rhythmicity in this organism, leads to encystment when given 1 h before lights-off in LD 11:13 at 15oC, i.e., under otherwise noninducing conditions. Again, at 20oC, melatonin is inefficient. Some analogues of melatonin, in particular, 5-methoxytryptamine and N,N-dimethyl-5-methoxytryptamine, and, at high concentrations, their respective precursors, serotonin and bufotenin, are capable of inducing cyst formation at 20oC and in LD 12:12, whereas A'-acetyl-serotonin does not show this effect.  相似文献   

19.
Experiments indicate that osmic-fixed, plastic-embedded sections are suitable for examination in the light microscope. Nuclei, mitochondia, cellular membranes and cytoplasmic granules are readily demonstrable by phase microscopy. Connective tissue stains permit the identification of elastic and collagenous fibers. Glycogen and other carbohydrate-containing structures are demonstrable by the periodic acid-Schiff and the ammoniacal silver nitrate procedures. It is, therefore, possible to cross-check individual structures by comparing alternate thick and thin sections, examined in the light microscope and electron microscope respectively. Several other advantages pertain to plastic embedded tissues. The sections compare favorably in translucency and in their lack of distortion with material embedded in celloidin, yet the procedure is simpler and much more rapid. Sections of any desired thinness can be prepared, and alternate thick and thin sections are easily forthcoming. When examined in the phase-contrast microscope, mitochondrial preparations become routinely available without the uncertainties of most of the mitochondrial staining methods. It appears, therefore, that plastic embedding should find a useful place among the methods for light microscopy as well as in the armamentarium of the electron microscopist.  相似文献   

20.
Summary Lysosomes stain with the argentaffin reaction after fixation with glutaraldehyde followed by osmium tetroxide. The reaction works well both at the level of the light and electron microscope. Control experiments show that this argentaffinity is caused by reduced osmium tetroxide. No staining could be observed in freeze-dried material, in tissues fixed only with glutaraldehyde, or after bleaching of the sections with hydrogen peroxide solutions. In the electron microscope, the population of lysosomes appears heterogeneous as related to the density of silver deposits over the organelles. No correlation is found between size and argentaffinity of lysosomes. X-ray microanalysis of sections from glutaraldehyde/osmium tetroxide fixed material reveals significantly higher amounts of osmium in lysosomes, as compared to other cell organelles (e.g. peroxisomes or mitochondria). A significant peak for silver is observed in lysosomes after treatment of the sections with ammoniacal silver solution, whereas the signal for osmium is reduced. Amounts of sulphur are too low to be detected in lysosomes. It is concluded that argentaffin staining of lysosomes is an osmium dependent reaction.Parts of these results have been presented as a poster during the 20th Congress of Electron Microscopy, joint session of the Austrian Society of Electron Microscopy and the German Society of Electron Microscopy, August 23–28, 1981, Innsbruck, Austria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号