首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human 34-kDa peroxisomal membrane protein (PMP34) consisting of 307 amino acids was previously identified as an ortholog of, or a similar protein (with 27% identity) to the, 423-amino acid-long PMP47 of the yeast Candida boidinii. We investigated membrane topogenesis of PMP34 with six putative transmembrane segments, as a model peroxisomal membrane protein. PMP34 was characterized as an integral membrane protein of peroxisomes. Transmembrane topology of PMP34 was determined by differential permeabilization and immunofluorescent staining of HeLa cells ectopically expressing PMP34 as well as of Chinese hamster ovary-K1 expressing epitope-tagged PMP34. As opposed to PMP47, PMP34 was found to expose its N- and C-terminal parts to the cytosol. Various deletion variants of PMP34 and their fusion proteins with green fluorescent protein were expressed in Chinese hamster ovary-K1 and were verified with respect to intracellular localization. The loop region between transmembrane segments 4 and 5 was required for the peroxisome-targeting activity, in which Ala substitution for basic residues abrogated the activity. Three hydrophobic transmembrane segments linked in a flanking region of the basic loop were essential for integration of PMP34 to peroxisome membranes. Therefore, it is evident that the intervening basic loop plus three transmembrane segments of PMP34 function as a peroxisomal targeting and topogenic signal.  相似文献   

2.
A gene encoding PMP47, a peroxisomal integral membrane protein of the methylotrophic yeast Candida boidinii, was isolated from a genomic library. DNA sequencing of PMP47 revealed an open reading frame of 1269 base pairs capable of encoding a protein of 46,873 Da. At least two membrane-spanning regions in the protein are predicted from the sequence. Since the 3 amino acids at the carboxyl terminus are -AKE, PMP47 lacks a typical peroxisomal sorting signal. No significant similarities in primary structure between PMP47 and known proteins were observed, including PMP70, a rat peroxisomal membrane protein whose sequence has recently been reported (Kamijo, K., Taketani, S., Yokota, S., Osumi, T., and Hashimoto, T. (1990). J. Biol. Chem. 265, 4534-4540). In order to study the import and assembly of PMP47 into peroxisomes by genetic approaches, the gene was expressed in the yeast Saccharomyces cerevisiae. When PMP47 was expressed in cells grown on oleic acid to induce peroxisomes, the protein was observed exclusively in peroxisomes as determined by marker enzyme analysis of organelle fractions. Most of the PMP47 co-purified with the endogenous peroxisomal membrane proteins on isopycnic sucrose gradients. Either in the native host or when expressed in S. cerevisiae, PMP47 was not extractable from peroxisomal membranes by sodium carbonate at pH 11, indicating an integral membrane association. These results indicate that PMP47 is competent for sorting to and assembling into peroxisomal membranes in S. cerevisiae.  相似文献   

3.
Using a combination of in vivo and in vitro assays, we characterized the sorting pathway and molecular targeting signal for the Arabidopsis 22-kD peroxisome membrane protein (PMP22), an integral component of the membrane of all peroxisomes in the mature plant. We show that nascent PMP22 is sorted directly from the cytosol to peroxisomes and that it is inserted into the peroxisomal boundary membrane with its N- and C-termini facing the cytosol. This direct sorting of PMP22 to peroxisomes contrasts with the indirect sorting reported previously for cottonseed (Gossypium hirsutum) ascorbate peroxidase, an integral PMP that sorts to peroxisomes via a subdomain of the endoplasmic reticulum. Thus, at least two different sorting pathways for PMPs exist in plant cells. At least four distinct regions within the N-terminal one-half of PMP22, including a positively charged domain present in most peroxisomal integral membrane-destined proteins, functions in a cooperative manner in efficient peroxisomal targeting and insertion. In addition, targeting with high fidelity to peroxisomes requires all four membrane-spanning domains in PMP22. Together, these results illustrate that the PMP22 membrane peroxisomal targeting signal is complex and that different elements within the signal may be responsible for mediating unique aspects of PMP22 biogenesis, including maintaining the solubility before membrane insertion, targeting to peroxisomes, and ensuring proper assembly in the peroxisomal boundary membrane.  相似文献   

4.
In order to clarify the peroxisomal membrane proteins (PMPs), we characterized one of the major PMPs, PMP38. The deduced amino acid sequence for its cDNA in Arabidopsis thaliana contained polypeptides with 331 amino acids and had high similarity with those of Homo sapiens PMP34 and Candida boidinii PMP47 known as homologues of mitochondrial ATP/ADP carrier protein. We expected PMP38 to be localized on peroxisomal membranes, because it had the membrane peroxisomal targeting signal. Cell fractionation and immunocytochemical analysis using pumpkin cotyledons revealed that PMP38 is localized on peroxisomal membranes as an integral membrane protein. The amount of PMP38 in pumpkin cotyledons increased and reached the maximum protein level after 6 d in the dark but decreased thereafter. Illumination of the seedlings caused a significant decrease in the amount of the protein. These results clearly showed that the membrane protein PMP38 in glyoxysomes changes dramatically during the transformation of glyoxysomes to leaf peroxisomes, as do the other glyoxysomal enzymes, especially enzymes of the fatty acid beta-oxidation cycle, that are localized in the matrix of glyoxysomes.  相似文献   

5.
G M Small  L J Szabo    P B Lazarow 《The EMBO journal》1988,7(4):1167-1173
Acyl-CoA oxidase is a major induced enzyme in peroxisomes of Candida tropicalis grown on fatty acids. The gene, POX4, encoding acyl-CoA oxidase was expressed in vitro, and the resulting polypeptide was imported into purified peroxisomes in a temperature-dependent fashion. Plasmids containing fragments of POX4 were prepared, expressed and the polypeptides tested for import into peroxisomes. We identified two regions of acyl-CoA oxidase (amino acids 1-118 and 309-427) that contained information that specifically targeted fragments of acyl-CoA oxidase to peroxisomes. The corresponding regions of the gene were fused to cDNA encoding the cytosolic enzyme dihydrofolate reductase (DHFR), and the expressed fusion proteins were likewise imported into peroxisomes. DHFR itself neither bound to, nor was imported into peroxisomes. Thus, there are at least two regions of peroxisomal targeting information in the acyl-CoA oxidase gene.  相似文献   

6.
No targeting sequence for peroxisomal integral membrane proteins has yet been identified. We have previously shown that a region of 67 amino acids is necessary to target Pmp47, a protein that spans the membrane six times, to peroxisomes. This region comprises two membrane spans and the intervening loop. We now demonstrate that the 20 amino acid loop, which is predicted to face the matrix, is both necessary and sufficient for peroxisomal targeting. Sufficiency was demonstrated with both chloramphenicol acetyltransferase and green fluorescent protein as carriers. There is a cluster of basic amino acids in the middle of the loop that we predict protrudes from the membrane surface into the matrix by a flanking stem structure. We show that the targeting signal is composed of this basic cluster and a block of amino acids immediately down-stream from it.  相似文献   

7.
Pmp47 is a peroxisomal membrane protein consisting of six transmembrane domains (TMDs). We previously showed that the second matrix loop containing a basic cluster of amino acids is important for peroxisomal targeting, and similar basic targeting motifs have been found in other peroxisomal membrane proteins. However, this basic cluster by itself targets to peroxisomes very poorly. We have developed a sensitive quantitative localization assay based on the targeting of Pmp47-GFP fusion proteins to identify the important elements of the basic cluster and to search for other targeting information on Pmp47. Our data suggest that side-chain structure and position as well as charge are important for targeting by the basic cluster. Analysis of other regions of Pmp47 indicates that all TMDs except TMD2 can be eliminated or substituted without significant loss of targeting. TMD2 plus an adjacent cytoplasmic-oriented sequence is crucial for targeting. Cytoplasmic-oriented sequences from two other peroxisomal membrane proteins, ScPex15p and ScPmp22, could partially substitute for the analogous sequence in Pmp47. Targeting with high fidelity to oleate-induced peroxisomes required the following elements: the cytoplasmic-oriented sequence and TMD2, a short matrix loop containing a basic cluster, and a membrane-anchoring TMD.  相似文献   

8.
Investigating targeting of the 22 kDa peroxisomal membrane protein (Pmp22p) to the peroxisomal membrane we have confined the targeting signal to amino acid residues 16-37 located in the N-terminal cytoplasmic tail. Comparison of Pmp22p orthologous sequences revealed a conserved motif Y3xL3xP3x(KQN) which might represent the core of this targeting signal not found so far in other Pmps. Fusion of the Pmp22p N-terminal tail to the C-terminal portion of Pmp22p which per se is not targeted to peroxisomes, conveys peroxisomal targeting. These data suggest that Pmp22p is targeted to peroxisomes by a new membrane targeting signal which is necessary and sufficient to target a polypeptide containing two transmembrane spans to peroxisomes.  相似文献   

9.
Peroxisomes are multipurpose organelles present in nearly all eukaryotic cells. All peroxisomale matrix and membrane proteins are synthesized in the cytoplasm. While a clear picture of the basic targeting mechanisms for peroxisomal matrix proteins has emerged over the past years, the targeting processes for peroxisomal membrane proteins are poorly understood. The 70-kDa peroxisomal integral membrane protein (PMP70) is one of the proteins located in the human peroxisome membrane. PMP70 belongs to the family of ATP-binding cassette (ABC) transporter proteins. It consists of six transmembrane domains and an ATP-binding fold in the cytosol. Here we describe that efficient peroxisomal targeting of human PMP70 depends on three targeting elements in the amino-terminal protein region, namely amino acids 61 to 80 located in the cytosol as well as the first and second transmembrane domains. Furthermore, peroxin 19 (PEX19) interactions are not required for targeting human PMP70 to peroxisomes. PEX19 does not specifically bind to the targeting elements of human PMP70.  相似文献   

10.
Peroxisomal ascorbate peroxidase (APX) is a carboxyl tail-anchored, type II (N(cytosol)-C(matrix)) integral membrane protein that functions in the regeneration of NAD(+) in glyoxysomes of germinated oilseeds and protection of peroxisomes in other organisms from toxic H(2)O(2). Recently we showed that cottonseed peroxisomal APX was sorted post-translationally from the cytosol to peroxisomes via a novel reticular/circular membranous network that was interpreted to be a subdomain of the endoplasmic reticulum (ER), named peroxisomal ER (pER). Here we report on the molecular signals responsible for sorting peroxisomal APX. Deletions or site-specific substitutions of certain amino acid residues within the hydrophilic C-terminal-most eight-amino acid residues (includes a positively charged domain found in most peroxisomal integral membrane-destined proteins) abolished sorting of peroxisomal APX to peroxisomes via pER. However, the C-terminal tail was not sufficient for sorting chloramphenicol acetyltransferase to peroxisomes via pER, whereas the peptide plus most of the immediately adjacent 21-amino acid transmembrane domain (TMD) of peroxisomal APX was sufficient for sorting. Replacement of the peroxisomal APX TMD with an artificial TMD (devoid of putative sorting sequences) plus the peroxisomal APX C-terminal tail also sorted chloramphenicol acetyltransferase to peroxisomes via pER, indicating that the peroxisomal APX TMD does not possess essential sorting information. Instead, the TMD appears to confer the proper context required for the conserved positively charged domain to function within peroxisomal APX as an overlapping pER sorting signal and a membrane peroxisome targeting signal type 2.  相似文献   

11.
The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH(2)-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH(2)-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH(2)-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile(307)/Leu(308)) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.  相似文献   

12.
A peptide corresponding to an efficient peroxisomal targeting sequence, the carboxy terminal 12 amino acids of PMP20 from Candida boidinii, was employed as an affinity ligand to search for a peroxisomal targeting receptor. Two proteins from yeast extracts with apparent molecular masses of 20 and 80 kDa were detected by chemical cross-linking to radioiodinated peptide. Both proteins were present in cytosolic supernatants. The 20-kDa species did not cross-link to a control peptide with reversed sequence, whereas the 80-kDa protein cross-linked to both peptides. The cross-linking assay was used to purify the 20-kDa protein from Saccharomyces cerevisiae. Partial protein sequencing identified this protein as cyclophilin, the product of the CYP1 gene. This protein, a peptidyl-prolyl cis-trans isomerase, is the yeast homologue of the protein that mediates the immunosuppressant effects of the drug cyclosporin A (CsA). Cross-linking of peptide to cyclophilin was inhibited by CsA. The cross-linking of cyclophilin to the PMP20-derived peptide was unanticipated because the peptide contains no prolines. The CYP1-encoded protein was not required to target proteins to peroxisomes because this organelle appeared to be assembled normally in a CYP1-disrupted strain. Furthermore, the final three amino acids of the peptide, which are critical for peroxisomal sorting, were not required for cross-linking to cyclophilin. We conclude that either cyclophilin is playing a nonessential facilitating role in peroxisomal targeting or that the interaction of the targeting peptide to cyclophilin is mimicking an interaction with an unidentified substrate or effector of cyclophilin.  相似文献   

13.
The gene encoding Candida tropicalis peroxisomal trifunctional enzyme, hydratase-dehydrogenase-epimerase (HDE), was expressed in both Candida albicans and Saccharomyces cerevisiae. The cellular location of HDE was determined by subcellular fractionation followed by Western blot analysis of peroxisomal and cytosolic fractions using antiserum specific for HDE. HDE was found to be exclusively targeted to and imported into peroxisomes in both heterologous expression systems. Deletion and mutational analyses were used to determine the regions within HDE which are essential for its targeting to peroxisomes. Deletion of a carboxyl-terminal tripeptide Ala-Lys-Ile completely abolished targeting of HDE to peroxisomes, whereas large internal deletions of HDE (amino acids 38-353 or 395-731) had no effect on HDE targeting to peroxisomes in either yeast. This tripeptide is similar to, but distinct from, other tripeptide peroxisomal targeting sequences (PTSs) as identified in peroxisomal firefly luciferase and four mammalian peroxisomal proteins. Substitutions within the carboxyl-terminal tripeptide (Ala----Gly and Lys----Gln) supported targeting of HDE to peroxisomes of C. albicans but not of S. cerevisiae. This is the first detailed analysis of the peroxisomal targeting signal in a yeast peroxisomal protein.  相似文献   

14.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major integral membrane proteins of rat liver peroxisomes. cDNA clones for PMP70 were isolated and sequenced. The predicted amino acid sequence (659 amino acid residues) revealed that the carboxyl-terminal region of PMP70 has strong sequence similarities to a group of ATP-binding proteins such as MalK and Mdr. These proteins form a superfamily and are involved in various biological processes including membrane transport. Limited protease treatment of peroxisomes showed that the ATP-binding domain of PMP70 is exposed to the cytosol. The hydropathy profile, in comparison with those of several other members of the ATP-binding protein superfamily, suggests that PMP70 is a transmembrane protein possibly forming a channel. Based on these results, we propose that PMP70 is involved in active transport across the peroxisomal membrane.  相似文献   

15.
PTS1-independent sorting of peroxisomal matrix proteins by Pex5p   总被引:1,自引:0,他引:1  
Most peroxisomal matrix proteins contain a peroxisomal targeting signal 1 (PTS1) for sorting to the correct organelle. This signal is located at the extreme C-terminus and generally consists of only three amino acids. The PTS1 is recognized by the receptor protein Pex5p. Several examples have been reported of peroxisomal matrix proteins that are sorted to peroxisomes via Pex5p, but lack a typical PTS1 tripeptide. In this contribution we present an overview of these so-called non-PTS1 proteins and discuss the current knowledge of the molecular mechanisms involved in their sorting.  相似文献   

16.
The carboxy-terminal residues of several peroxisomal proteins were shown to act as a peroxisomal targetting signal. This study was conducted to test whether the C-terminus of glycolate oxidase, a key enzyme in the glycolate metabolism pathway, is functioning as a targetting signal that directs proteins into plant leaf peroxisomes. A chimeric gene coding for a fusion protein composed of the C-terminal-truncated beta-glucuronidase, a synthetic linker of four amino acids and the last six C-terminal amino acids of glycolate oxidase, was constructed. Transformation of tobacco plants with the chimeric gene resulted in expression of beta-glucuronidase enzymic activity. About 50% of the transgenic beta-glucuronidase activity was localized to the peroxisomes. The results indicate that the six C-terminal amino acid residues of glycolate oxidase act as a targetting signal that is recognized by leaf peroxisomes.  相似文献   

17.
As part of an effort to understand how proteins are imported into the peroxisome, we have sought to identify the peroxisomal targeting signals in four unrelated peroxisomal proteins: human catalase, rat hydratase:dehydrogenase, pig D-amino acid oxidase, and rat acyl-CoA oxidase. Using gene fusion experiments, we have identified a region of each protein that can direct heterologous proteins to peroxisomes. In each case, the peroxisomal targeting signal is contained at or near the carboxy terminus of the protein. For catalase, the peroxisomal targeting signal is located within the COOH-terminal 27 amino acids of the protein. For hydratase:dehydrogenase, D-amino acid oxidase, and acyl-CoA oxidase, the targeting signals are located within the carboxy-terminal 15, 14, and 15 amino acids, respectively. A tripeptide of the sequence Ser-Lys/His-Leu is present in each of these targeting signals as well as in the peroxisomal targeting signal identified in firefly luciferase (Gould, S.J., G.-A. Keller, and S. Subramani. 1987. J. Cell Biol. 105:2923-2931). When the peroxisomal targeting signal of the hydratase:dehydrogenase is mutated so that the Ser-Lys-Leu tripeptide is converted to Ser-Asn-Leu, it can no longer direct proteins to peroxisomes. We suggest that this tripeptide is an essential element of at least one class of peroxisomal targeting signals.  相似文献   

18.
Peroxisomal enzymatic proteins contain targeting signals (PTS) to enable their import into peroxisomes. These targeting signals have been identified as PTS1 and PTS2 in mammalian, yeast, and higher plant cells; however, no PTS2-like amino acid sequences have been observed in enzymes from the genome database of Cyanidiochyzon merolae (Bangiophyceae), a primitive red algae. In studies on the evolution of PTS, it is important to know when their sequences came to be the peroxisomal targeting signals for all living organisms. To this end, we identified a number of genes in the genome database of the green algae Chlamydomonas reinhardtii, which contains amino acid sequences similar to those found in plant PTS. In order to determine whether these sequences function as PTS in green algae, we expressed modified green fluorescent proteins (GFP) fused to these putative PTS peptides under the cauliflower mosaic virus 35S promoter. To confirm whether granular structures containing GFP–PTS fusion proteins accumulated in the peroxisomes of Closterium ehrenbergii, we observed these cells after the peroxisomes were stained with 3, 3′-diaminobenzidine. Our results confirm that the GFP–PTS fusion proteins indeed accumulated in the peroxisomes of these green algae. These findings suggest that the peroxisomal transport system for PTS1 and PTS2 is conserved in green algal cells and that our fusion proteins can be used to visualize peroxisomes in live cells.  相似文献   

19.
Several peroxisomal proteins do not contain the previously identified tripeptide peroxisomal targeting signal (PTS) at their carboxy-termini. One such protein is the peroxisomal 3-ketoacyl CoA thiolase, of which two types exist in rat [Hijikata et al. (1990) J. Biol. Chem., 265, 4600-4606]. Both rat peroxisomal thiolases are synthesized as larger precursors with an amino-terminal prepiece of either 36 (type A) or 26 (type B) amino acids, that is cleaved upon translocation of the enzyme into the peroxisome. The prepieces are necessary for import of the thiolases into peroxisomes because expression of an altered cDNA encoding only the mature thiolase, which lacks any prepiece, results in synthesis of a cytosolic enzyme. When appended to an otherwise cytosolic passenger protein, the bacterial chloramphenicol acetyltransferase (CAT), the prepieces direct the fusion proteins into peroxisomes, demonstrating that they encode sufficient information to act as peroxisomal targeting signals. Deletion analysis of the thiolase B prepiece shows that the first 11 amino acids are sufficient for peroxisomal targeting. We conclude that we have identified a novel PTS that functions at amino-terminal or internal locations and is distinct from the C-terminal PTS. These results imply the existence of two different routes for targeting proteins into the peroxisomal matrix.  相似文献   

20.
To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号