首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of 1 mm dibutyryl cyclic AMP (Bt2cAMP) to cultures of mouse hepatoma cells, Hepa, specifically stimulates the synthesis of serum proteins including albumin. This stimulation is accompanied by an inhibition of cell proliferation. We have investigated these phenomena in synchronous cultures of Hepa. Proliferation of Hepa was arrested by isoleucine starvation. Synchronous growth was initiated by addition of complete growth medium or complete growth medium supplemented with 1 mm Bt2cAMP. S phase and mitosis were estimated by determinations of [3H]thymidine incorporation and by cell numbers. The rate of albumin synthesis relative to total protein synthesis was measured by pulse labeling cultures for 30 min with [3H]leucine and comparing amounts of immunoprecipitable label with trichloroacetic acid-precipitable label. Treatment of synchronous cultures with Bt2cAMP did not alter the duration of S phase or the onset of mitosis. The relative rate of albumin synthesis in Bt2cAMP-treated culture began increasing after mitosis. The timing of the Bt2cAMP stimulation of albumin synthesis was further investigated by adding Bt2cAMP to cultures of Hepa at various times after the initiation of synchronous growth. The relative rate of albumin synthesis was then measured at a fixed postmitotic time. An increased relative rate of albumin synthesis was observed only in cultures exposed to Bt2cAMP before or during S phase. Thus the postmitotic increase in the synthesis of albumin requires the presence of Bt2cAMP during S phase.  相似文献   

2.
C6 cells were grown in monolayer culture under conditions permitting continued exponential cell division after attainment of a density at which extensive intercellular contacts were formed. An increase in the relative synthesis of S100 protein coincided with the time of formation of extensive intercellular contacts and preceded the onset of the stationary phase of growth by three generations. These observations suggested that the induction of S100 protein synthesis was mediated by cell contact and not by an arrest of cellular growth. The mechanism of this induction was first studied in a homologous non-initiating cell-free protein-synthesizing system from C6 cells, using fixed amounts of free amino acids or fully charged rat liver aminoacyl-tRNA as a source of precursors for protein synthesis. Real synthesis of total soluble proteins decreased as the cells progressed from logarithmic to stationary growth while synthesis of S100 protein increased during this period. The capacity of poly(A)+ RNA from logarithmic and stationary cultures to direct the synthesis of S100 protein was estimated in a cell-free protein-synthesizing system derived from wheat embryos. Increased synthesis of S100 protein in stationary cultures was directly correlated with an increase in translatable S100 protein mRNA.  相似文献   

3.
In polyoma-infected mouse kidney cell cultures 5S RNA synthesis began to increase around 16 h, i.e. 7-9 h after the onset of polyoma T-antigen synthesis. The rate of polyoma-induced 5S RNA synthesis reached a maximum plateau around 25 h when it was 1.8-2.0 times higher than in mock-infected parallel cultures. Stimulation of 5S RNA synthesis in vivo thus coincided in time with the increase in total cellular RNA and protein. Cell-free extracts (S100) prepared at 15 h from mock-(S100-M) or polyoma-infected (S100-Py) mouse kidney cell cultures were indistinguishable with respect to protein concentration and 5S RNA synthesis, using a cloned somatic Xenopus borealis 5S gene as template. S100-Py extracted 25 h after infection contained 30% more protein and synthesized 1.5-2.0 times more 5S RNA than S100-M. Complete removal of the polyoma T-antigens from S100-Py by 3 cycles of immunoprecipitation with hamster anti-T serum remained without effect on stimulated 5S RNA synthesis. However, a linear relationship between 5S RNA synthesis and protein concentration of S100-M and S100-Py was observed.  相似文献   

4.
Subacute methyl mercury (MeHg) intoxication was induced in adult rats following the daily intragastric administration of 1 mg MeHg/100 g body weight. Decreased [14C]leucine incorporation into cerebral and cerebellar slice protein was found. Weight loss occurred during the latent and neurotoxic phases but pair feeding did not reveal a significant defect in amino acid incorporation into slice protein. There was no decline in synaptosome protein synthesis in vitro during the latent phase but a significant decline in cerebellar and cerebral synaptosome synthesis was found during the neurotoxic phase. MeHg in vitro inhibited cerebral slice and synaptosome protein synthesis at half maximal concentrations of 7.5 and 12.5 μM respectively. Inhibition of synthesis in synaptosomes was non-competitive with K1 of 4 × 10?6M. MeHg had no effect on [14C]leucine or [14C]proline uptake into synaptosomes. There was no significant inhibition of synaptosome basal ATPase or Na + K ATPase at concentrations of MeHg (12 μM) giving half maximal inhibition of protein synthesis. No preferential inhibition of the chloramphenicol (55S) or cycloheximide sensitive components of synaptosome fraction protein synthesis was found, suggesting that the inhibition is common to both mitochondrial and extramitochondrial protein synthesizing systems. Addition of nucleotides and/or atractylate failed to influence protein synthesis and did not reverse the MeHg inhibition. Mannitol, as a replacement for the predominant cation species of the incubation medium, gave 40% inhibition of protein synthesis in the control but protected against further inhibition by MeHg.  相似文献   

5.
Using primary hepatocytes in culture, various 2-acetamido-2-deoxy-D-glucose (GlcNAc) analogs were examined for their effects on the incorporation of D-[3H]glucosamine, [35S]sulfate, and L-[14C]leucine into cellular glycoconjugates. A series of acetylated GlcNAc analogs, namely methyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-(3) and β-D-glucopyranoside (4) and 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose (5), exhibited a concentration-dependent reduction of D-[3H]glucosamine, but not of [35S]sulfate incorporation into isolated glycosaminoglycans (GAGs), without affecting L-[14C]leucine incorporation into total protein synthesis. These results suggest that analogs 3–5 exhibit an inhibitory effect on D-[3H]glucosamine incorporation into isolated GAGs by diluting the specific activity of cellular D-[3H]glucosamine and by competing for the same metabolic pathways. In the case of the corresponding series of 4-deoxy-GlcNAc analogs, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-α-(6) and β-D-xylo-hexopyranoside (7) and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-D-xylo-hexopyranose (8), compound 8 at 1.0 mM exhibited the greatest reduction of D-[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs, namely to ∼7% of controls, and a moderate inhibition of total protein synthesis, namely to 60% of controls. Exogenous uridine was able to restore the inhibition of total protein synthesis by compound 8 at 1.0 mM. Isolated GAGs from cultures treated with compound 8 were shown to be smaller in size (∼40 kDa) than for control cultures (∼77 kDa). These results suggest that the inhibitory effects of compound 8 on cellular GAG synthesis may be mediated by the incorporation of a 4-deoxy moiety into GAGs resulting in premature chain termination and/or by its serving as an enzymatic inhibitor of the normal sugar metabolites. The inhibition of total protein synthesis from cultures treated with compound 8 suggests a uridine trapping mechanism which would result in the depletion of UTP pools and cause the inhibition of total protein synthesis. A 1-deoxy-GlcNAc analog, namely 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-glucitol (9), also exhibited a reduction in both D -[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs by 19 and 57%, of the control cells, respectively, at 1.0 mM without affecting total protein synthesis. The inability of compound 9 to form a UDP-sugar and, hence, be incorporated into GAGs presents another metabolic route for the inhibition of cellular GAG synthesis. Potential metabolic routes for each analog's effects are presented.  相似文献   

6.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H]leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating ribosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

7.
Noncoordinate control of RNA synthesis in eucaryotic cells   总被引:3,自引:0,他引:3  
M V Willis  J B Baseman  H Amos 《Cell》1974,3(2):179-184
Inhibition of protein synthesis in confluent monolayers of chick fibroblasts stimulates selectively the synthesis of 4S RNA, resulting in a net accumulation of 4S RNA in the inhibited cells. Under these conditions, inhibition of ribosomal RNA synthesis and processing occurs, as does a decrease in soluble uridine phosphate concentrations; increased pools of certain amino acids are also apparent. Recovery of cells from inhibition is accompanied by a rapidly increasing rate of protein synthesis that lasts for several hours. The small molecular weight RNA synthesized during inhibition of protein synthesis appears properly methylated, and in the presence of cycloheximide and actinomycin D shows a precursor-product conversion. Radiolabeled RNA synthesized during inhibition of protein synthesis is stable following the recovery of cells from inhibition. Stimulation of uridine incorporation into 4S RNA during arrest of protein synthesis is also demonstrated in high-density cultures of L- and Hep-2 cells, suggesting that this non-coordinate stimulation of 4S RNA may be a general property of eucaryotic cells.  相似文献   

8.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

9.
The synthesis of a protein unique to the nervous system, the “S100-protein,” has been studied in a clonal line of rat glial cells. It has been shown that these cells do not begin to accumulate “S100-protein” until the cultures enter a phase of density-dependent inhibition of cell proliferation. Further experiments indicate that the regulation of “S100-protein” accumulation resides at least in part in an interaction involving the cell surface.  相似文献   

10.
The sulfur content of residue protein was determined for pure cultures of Nitrosococcus oceanus, Desulfovibrio salexigens, 4 mixed populations of fermentative bacteria, 22 samples from mixed natural population enrichments, and 11 nutritionally and morphologically distinct isolates from enrichments of Sargasso Sea water. The average 1.09 ± 0.14% (by weight) S in protein for 13 pure cultures agrees with the 1.1% calculated from average protein composition. An operational value encompassing all mixed population and pure culture measurements has a coefficient of variation of only 15.1% (n = 41). Short-term [35S]sulfate incorporation kinetics by Pseudomonas halodurans and Alteromonas luteoviolaceus demonstrated a rapid appearance of 35S in the residue protein fraction which was well modelled by a simple exponential uptake equation. This indicates that little error in protein synthesis determination results from isotope dilution by endogenous pools of sulfur-containing compounds. Methionine effectively competed with sulfate for protein synthesis in P. halodurans at high concentrations (10 μM), but had much less influence at 1 μM. Cystine competed less effectively with sulfate, and glutathione did not detectably reduce sulfate-S incorporation into protein. [35S]sulfate incorporation was compared with [14C]glucose assimilation in a eutrophic brackish-water environment. Both tracers yielded similar results for the first 8 h of incubation, but a secondary growth phase was observed only with 35S. Redistribution of 14C from low-molecular-weight materials into residue protein indicated additional protein synthesis. [35S]sulfate incorporation into residue protein by marine bacteria can be used to quantitatively measure bacterial protein synthesis in unenriched mixed populations of marine bacteria.  相似文献   

11.
Subcellular fractions have been isolated from synchronized fibroblasts in S phase and from parallel cultures in which effective entry into S is prevented by either hydroxyurea or cholera toxin, for analysis of changes in endogenous protein phosphorylation with ATP-γ-32P. Soluble fractions from cells exposed to cholera toxin or hydroxyurea revealed a similar pattern which differed from that of control cells in which a 90K phosphoprotein was evident. Ribosomal and nuclear fractions from hydroxyureatreated cells revealed different phosphoprotein patterns from those seen in cholera toxin-treated cells, supporting a different mode of action of both drugs in their inhibition of DNA synthesis.  相似文献   

12.
Ouabain inhibited in a concentration-dependent and completely reversible way, the synthesis of DNA, RNA and protein in phytohemagglutinin and concanavalin A-stimulated human lymphocytes without affecting the uptake of nucleosides and amino acids into the cells. On the other hand, ouabain even at very high concentrations was unable to interfere with the binding of [3H]concanavalin A. No correlation was found between the inhibition by ouabain of macromolecular synthesis and that of K+ transport. The inhibitor effect of ouabain on the stimulation of macromolecular synthesis could be partially reversed by higher concentrations of K+, due to the direct inhibition of ouabain binding. Ouabain added to the cultures at different stages of cell growth suppressed the incorporation of thymidine to various extents. Both ouabain sensitive stages fell in a period preceding the onset of mitosis and were characterized by very active thymidine incorporation. Lymphocytes were most sensitive to ouabain within the S phase. The results suggest that ouabain interferes with mitogen-triggered membrane-associated events, other than K+ transport, controlling mitosis at distinct phases of the cell cycle.  相似文献   

13.
S100A8 and S100A9 are Ca2+-binding proteins that are associated with acute and chronic inflammation and cancer. They form predominantly heterodimers even if there are data supporting homodimer formation. We investigated the stability of the heterodimer in myeloid and S100A8/S100A9 over-expressing COS cells. In both cases, S100A8 and S100A9 proteins were not completely degraded even 48 hrs after blocking protein synthesis. In contrast, in single transfected cells, S100A8 protein was completely degraded after 24 h, while S100A9 was completely unstable. However, S100A9 protein expression was rescued upon S100A8 co-expression or inhibition of proteasomal activity. Furthermore, S100A9, but not S100A8, could be stabilized by LPS, IL-1β and TNFα treatment. Interestingly, stimulation of S100A9-transfected COS cells with proteasomal inhibitor or IL-1β lead to the formation of protease resistant S100A9 homodimers. In summary, our data indicated that S100A9 protein is extremely unstable but can be rescued upon co-expression with S100A8 protein or inflammatory stimuli, via proteolytically resistant homodimer formation. The formation of S100A9 homodimers by this mechanism may constitute an amplification step during an inflammatory reaction.  相似文献   

14.
The effect of cell crowding on DNA synthesis (incorporation of 3HTdR and 32PO4) was studied by an improved method in monolayers of secondary cells and established cell lines, either normal or transformed by viruses or carcinogens. The method was based mainly on pulse labeling of cultures of cells a few hours after their seeding in equal numbers onto areas of different size in identical dishes, a condition which ensured equal physiological conditions and different degrees of crowding of cells. DNA synthesis was hardly inhibited in crowded monolayers of secondary chick, mouse and hamster embryo cells. The incorporation of radioactive thymidine and phosphate into DNA of cell lines such as BHK 21, 3T3/SV40 and L929 was strongly inhibited. An SV40-transformed line of hamster kidney cells (HKT7) synthetized DNA equally well in sparse as in crowded monolayers. In lines of human amnion (FL) and BHK 21 cells which were more extensively studied the degree of inhibition of DNA synthesis was inversely proportional to their density. Autoradiography after 3HTdR pulse-labeling indicated that the same proportion of cell nuclei were labeled in sparse and in crowded cultures. The extent of labeling (number of grains per nucleus) was lower in crowded cultures of those cells that also showed inhibition of incorporation of this label as measured by scintillation. The inhibition is thus expressed in retardation of DNA synthesis in cells in S phase rather than arresting it in a larger percentage of cells.  相似文献   

15.
The addition of KLH to KLH-primed rabbit lymph node cell cultures induced an anamnestic antibody response. The further addition of prostaglandins of the E series, but not PGF1α, enhanced this antibody response manifold. The addition to these cultures of prostaglandin synthetase inhibitors together with KLH inhibited antibody production. At the concentration (10?4) required to inhibit antibody synthesis, by a variety of criteria one of these inhibitors, indomethacin, was shown not to exert its effects through cytotoxicity. By contrast, two other inhibitors of prostaglandin synthesis, Ro-20-5720 and Ro-3-1314, inhibited antibody synthesis because of their cytotoxicity. The inhibition of the antibody response by indomethacin did not occur when PGE1 or PGE2 was added concurrently to these cultures, clearly showing that inhibition was due to a deficiency of prostaglandins. These findings strongly suggest that induction and/or regulation of the in vitro anamnestic antibody response of KLH-primed lymph node cells to 1 and 100 μg KLH requires continued prostaglandin synthesis. Potential mechanisms for the regulation of the antibody response by prostaglandins are discussed.  相似文献   

16.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

17.
Amphotericin B, a sterol-binding polyene antibiotic, was found to inhibit DNA synthesis more than protein or RNA synthesis of asynchronous cultures of Chinese hamster V79 cells. DNA synthesis in the asynchronous V79 cells was inhibited to 40–60% of the control activity in the presence of 50 μg/ml amphotericin B. However, addition of 50 μg/ml of polyene immediately after the onset of DNA synthesis (early S phase) caused a drastic reduction of DNA synthesis (below 10–20% of the control in synchronized V79 cells, whereas the inhibition was much lessened when the polyene was added 1 h later (middle S phase). In contrast, there was no inhibition of DNA synthesis by amphotericin B in an amphotericin-B-resistant (AMBR) clone that was derived from V79. Flow microfluorometry analysis confirmed that a large number of asynchronous V79 cells were arrested in the G1 phase of the cell cycle when treated with lower dose of amphotericin B. A higher dose of the polyene antibiotic also accumulated cells at the G2 (or at both S and G2) phase as well as the G1 phase. Morphological studies by scanning electron microscope showed an increased number of V79 cells with decreased microvilli in V79 cells treated with amphotericin B.  相似文献   

18.
The dependence of DNA synthesis on protein synthesis in HeLa S3 cells   总被引:3,自引:0,他引:3  
The rate of DNA synthesis in HeLa S3 cells, as measured by incorporation of C14-labeled thymidine, is strongly dependent on protein synthesis at all times during the S phase. The relation between the rate of DNA synthesis and the rate of protein synthesis is linear when measured two or three hours after reducing the rate of protein synthesis with either puromycin or cycloheximide. The effect is manifested rapidly, is found in both random and synchronized cultures, and is independent of the method of synchronization.  相似文献   

19.
We previously showed in intact L cells that interferon treatment did not modify the shut-off of cellular RNA and protein synthesis induced by infection with Mengo virus although viral replication is inhibited (1,2). We have also demonstrated that inhibition of host protein synthesis was not due to degradation of messengers since cellular mRNA could be extracted from interferon-treated infected cells and efficiently translated in a reticulocyte lysate(2). Cellular mRNA was not degraded although 2–5A was present as reported here. We prepared cell-free systems from such cells at a time when cellular shut-off was fully established. The undegraded messengers remained untranslated under cell-free protein synthesis conditions and almost no polysomes were detected. The decreased amount of [35S]Met-tRNA-40S complex observed in these lysates might account for the inhibition of protein synthesis at the level of initiation.  相似文献   

20.
Methylglyoxal bis-(guanylhydrazone) (mGBG) blocked the stimulation of DNA synthesis in quiescent, density-inhibited BALB/c-3T3 cells treated with platelet-derived growth factor (PDGF) and platelet-poor plasma (PPP). Competence formation produced by a transient exposure to PDGF was not effected by mGBG. In contrast, mGBG effectively inhibited the PPP-stimulated progression of competent cells through the G1 phase of the cell cycle, although maximal inhibition was observed when mGBG was present during both the exposure to PDGF- and PPP-supplemented media. When quiescent cells were treated with PDGF and PPP-supplemented media in the presence of mGBG for 12–18 hours and the mGBG was then removed, cells entered the S phase after a 4 hour lag. The rate of entry into the S phase, but not the time necessary for the cells to progress from the mGBG block into the S phase, was dependent on the concentration of PPP present after removal of the mGBG. Either somatomedin C or insulin, but not epidermal growth factor, fibroblast growth factor, or PDGF were able to substitute for PPP in allowing cells to enter the S phase after the cells were released from the mGBG block. A marked inhibition of (3H)-leucine incorporation in serum-stimulated cultures was produced at mGBG concentrations which caused no decrease in the amount of (3H)-uridine incorporated during a short (15 minute) pulse. The ability of hormones to allow cells to progress to the late G1 phase and become committed to DNA synthesis after a mGBG inhibition was not related to their ability to restore the normal rate of protein synthesis as determined by (3H)-leucine incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号