首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A composite gel system has been developed combining the chemical and physical properties of calcium alginate and agarose gels. The results of growing composite gel immobilized hybridoma SPO1 cells in a protein-free medium within a fluidized-bed perfusion bioreactor are presented in this paper. During the continuous operation of this system, the total cell density reached 3.9×107 cells per ml of beads (viability 79.6%). The specific productivity of monoclonal antibody of the immobilized hybridoma cells reached more than 1.5 g per 106 viable cells per hour, compared with 0.5 for non-immobilized viable cells grown in a one liter agitated bioreactor with the same medium. Significant increases in cell metabolic activities, including substrate utilization and byproduct formation, were also observed. Leaching of materials from the beads was evident and the major fraction of released materials was alginate.  相似文献   

2.
The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.  相似文献   

3.
Animal cell perfusion high density culture is often adopted for the production of biologicals in industry. In high density culture sometimes the productivity of biologicals has been found to be enhanced. Especially in immobilized animal cell culture, significant increase in the productivity has been reported. We have found that the specific monoclonal antibody (MAb) productivity of an immobilized hybridoma cell is enhanced more than double. Several examples of enhancing productivities have been also shown by collagen immobilized cells. Immobilized cells involve some different points from non-immobilized cells in high density culture: In immobilized culture, some cells are contacted together, resulting in locally much higher cell concentration more than 108 cells/ml. Information originating from a cell can be easily transduced to the others in immobilized culture because the distance between cells is much nearer. Here we have performed collagen gel immobilized culture of recombinant BHK cells which produce a human IgG monoclonal antibody in a protein-free medium for more than three months. In this high density culture a stabilized monoclonal antibody production was found with around 8 times higher specific monoclonal antibody productivity compared with that in a batch serum containing culture. No higher MAb productivity was observed using a conditioned medium which was obtained from the high density culture, indicating that no components secreted from the immobilized cells work for enhancing monoclonal antibody production. The MAb productivity by the non-immobilized cells obtained by dissolving collagen using a collagenase gradually decreased and returned to the original level in the batch culture using a fresh medium. This suggests that the direct contact of the cells or a very close distance between the cells has something to do with the enhancement of the MAb productivity, and the higher productivity is kept for a while in each cell after they are drawn apart.  相似文献   

4.
Summary Cells ofRhodospirillum rubrum have been immobilized in various gels and tested for photobiological hydrogen production. Agar proved to be the best immobilizing agent with respect to production rates as well as stability. Agar immobilized cells were also superior compared to liquid suspension cultures. Growth conditions of the cells prior to immobilization, e.g. cell age, light intensity or nutrient composition, were of primary importance for the activity in the later immobilized state. A reactor with agar immobilized cells has been operated successfully over 3000 h with a loss of the activity of about 60%. Mean rates for hydrogen production for immobilized cells in this work during the first 60 to 70 hours after immobilization were in the range of 18 to 34 μl H2 mg−1 d.w. h−1 and thus by a factor of up to 2 higher than liquid cultures under the same conditions. Maximal rates of hydrogen production (57 μl H2 ml−1 immobilized cell suspension) were reached in agar gel beads with cells immobilized after 70 h growth in liquid culture in the light and a cell density of 1.0 mg ml−1, 70 h after immobilization.  相似文献   

5.
The kinetics and long-term stability of continuous production of monoclonal antibody IgG2b by hybridoma HD-24 cells immobilized in a fibrous-bed bioreactor (FBB) were studied for a period of ~8 months. The cells were immobilized in the fibrous bed by surface attachment of cells and entrapment of large cell clumps in the void space of the fibrous matrix. A high viable cell density of 1.01 × 108/ml was attained in the bioreactor, which was about 63 times higher than those in conventional T-flask and spinner flask cultures. The continuous FBB produced IgG at a concentration of ~0.5 g/l, with reactor productivity of ~7 mg/h·l, which was about 23 times higher than those from conventional T-flask and spinner flask cultures. The IgG concentration can be further increased to ~0.67 g/l by using higher feed (glucose and glutamine) concentrations and running the reactor at a recycle batch or fed-batch mode. The long-term performance of this bioreactor was also evaluated. For a period of 36 days monitored, the MAb produced in the continuous well-mixed bioreactor at 50 h retention time (0.02/h dilution rate) was maintained at a steady concentration level of ~0.3 g/l with less than 8% drift. At the end of the study, it was found that ~25% of the cells were strongly attached to the fiber surfaces and the other ~75% entrapped or weakly immobilized in the fibrous matrix. The strongly attached cells had a high viability of ~90%, compared to ~75% for cells weakly immobilized and only ~1.4% for freely suspended cells, suggesting that the fibrous matrix preferentially retained and protected the viable (productive) cells. The FBB thus was able to maintain its long-term productivity because nonviable and dead cells were continuously washed off from the fibrous matrix. The high MAb concentration and production rate and excellent stability for continuous long-term production obtained in this study compare favorably to other bioreactor studies reported in the literature. The reactor performance can be further improved by providing better pH and aeration controls at higher feed concentrations. The FBB is easy to operate and scale-up, and thus can be used economically for industrial production of MAb.  相似文献   

6.
It has been proved that co-cultivation of human neuroblastoma cells and human fibrolast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76×106 viable cells/mL from 9×105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5×106 viable cells/mL, which was much higher than that from fed-batch cultivation. The nerve cell growth was greatly enhanced in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from, human fibroblast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.  相似文献   

7.
A photo-crosslinkable resin, BIX12, was selected from among various photo-crosslinkable resins for the immobilization of animal cells. BIX12 had no cytotoxic effect on the growth of hybridoma cells and the production of monoclonal antibody, although other photo-crosslinkable resins had significant inhibitory effects. Using BIX12-alginate hybrid gel particles, hybridoma cells could grow in the resins and produce monoclonal antibody. For the continuous production of monoclonal antibody, perfusion culture using a fluidized-bed bioreactor with direct air bubbling was carried out. By this cultivation, monoclonal antibody could be produced stably for more than 50 d. A high viable cell density of more than 107 cells/ml-gel was attained, and the antibody productivity was improved 8.5-fold compared with conventional suspension culture using a spinner flask. Anchorage-dependent cells were also immobilized in the resin particles by three immobilization procedures. Among these procedures, porous BIX12 formed by adding gelatin powder provided good support strength and allowed the cells to grow on the surface inside of the support.  相似文献   

8.
Relationship between monoclonal antibody (MAb) productivity and growth rate, and effects of high cell density on MAb production of hybridoma T0405 cells immobilized in macroporous cellulose carriers were investigated in continuous and batch cultures. The results showing, that the specific MAb production rate increased with increasing specific growth rate in both suspended and immobilized continuous cultures indicate a positively growth-associated relationship between MAb productivity and growth rate. Moreover, the specific production rate was higher in the immobilized cell culture than that in suspended one at all dilution rates. In order to clarify these phenomena, MAb mRNA expression and cell cycle distribution were investigated in batch cultures with immobilized cells and suspended cells. RT-PCR was used for observation of MAb mRNA expression and a two-color bromode-oxyuridine (BrdU)/propidium iodide (PI) flow cytometry method for determination of cell cycle distribution. The results revealed that MAb mRNA expression reached the peak during the exponential growth phase, suggest a positively growth-associated MAb production. And the immobilized cells continued the MAb mRNA expression until dead phase, which was longer than that in suspended cells. The cell cycle distribution patterns were observed almost the same for both immobilized and suspended cells. Such results may imply that a high cell density state has positive influence on the mRNA expression and on growth-associated MAb productivity of T0405 cells.  相似文献   

9.
Summary 7F11C7 hybridoma cells, secreting a MAb useful for drug targeting, may be cultivated over more than 2 months in bioreactor upon continuous perfusion of serum-, protein-free nutritive medium. With optimal perfusion rate of 48%/day, in the absence of cell recycling, cell density reaches a mean of 2.85 106 viable cells/ml (+ 7% of dead cells). MAb secretion reaches 78 g/ml x day, giving a production of 2.34 g/month x L, i.e. 13 times that obtained in T flasks.  相似文献   

10.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

11.
Existence of autocrine growth factors (aGFs) may influence the serum requirement for growth of hybridoma cells and thus significantly influence process economics. For the murine hybridoma cell line S3H5/2bA2, critical inoculum density (cID) and serum requirement for growth were inversely related for cultivation in both T flasks and spinner flasks. In spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 103 cell/ml was necessary in RPMI 1640 medium with 10% serum. In T flasks, where the local cell density is higher than in spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 1 cell/ml was also necessary in RPMI 1640 medium with 10% serum. Further, immobilized cells at high local cell density could grow under conditions where cells in T flasks at corresponding overall cell density could not grow. The cells at high inoculum density were less sensitive to shear induced by mechanical agitation than the cells at low inoculum density. Taken together these observations support the existence of secreted aGF(s) by the hybridoma cell line used. Since the specific MAb production rate was independent of cultivation method and inoculum density, the existence of autocrine growth factors would suggest that the use of immobilized cells should improve the economics of MAb production.  相似文献   

12.
Immobilization offers several intrinsic advantages over free suspension cultures for the production of monoclonal antibodies. An important advantage of immobilization is the improved specific monoclonal antibody (MAb) productivity (q(MAb)) that can be obtained. However, there are conflicting reports in the literature on the enhancement of the q(MAb) with immobilization. The discrepancies between these reports can be attributed to the different to either the cultivation methods used for immobilized cell or to difference between the cell lines used in the various studies. We show that these differences may be attributed to the different cultivation methods used for one model hybridoma cell line. S3H5/Upsilon2bA2 hybridoma cells entrapped in different sizes of calcium alginate beads were cultivated in both T- and spinner flasks in order to determine whether cultivation methods (T- and spinner flasks) and bead size influence the q(MAb) Free-suspended cell cultures inoculated with cells recovered from alginate beads were also carried out in order to determine whether changes in the q(Mab) of the entrapped cells are reversible.The cultivation methods was found to influence significantly the q(MAb) of the entrapped cells. When the entrapped cells in 1-mn diameter beads were cultivated in T-flasks, the q(MAb) was not increased by 200% as previously observed in an entrapped cell culture using 1-mm-diameter alginate beads in spinner flasks. The q(MAb) of the entrapped cell was approximately 58% higher than that of the free-suspended cells in a control experiment. Unlike the cultivation method, the bead size in the range of 1- to 3-mm diameter did not significantly influence the q(MAb), regardless of cultivations methods. The changes in q(MAb) of an entrapped cells were reversible. When the free-suspended cells recovered from the T- and spinner flasks were sub-cultured in T- and spinner flasks enhanced q(MAb) of the entrapped cells in both cases decreased to the level of the free-suspended cell in a control experiments. Taken together, these results shows that the method of cultivation of hybridoma cells immobilized in alginate beads determines the extent of enhancement of the q(MAb). (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
Nitrate and phosphate removal by chitosan immobilized Scenedesmus   总被引:4,自引:0,他引:4  
The effect of chitosan immobilization of Scenedesmus spp. cells on its viability, growth and nitrate and phosphate uptake was investigated. Scenedesmus sp. (strains 1 and 2) and Scenedesmus obliquus immobilized in chitosan beads showed high viability after the immobilization process. Immobilized Scenedesmus sp. strain 1 had a higher growth rate than its free living counterpart. Nitrate and phosphate uptake by immobilized cells of Scenedesmus sp. (strain 1), freely suspended cells and blank chitosan beads (without cells) were evaluated. Immobilized cells accomplished a 70% nitrate and 94% phosphate removal within 12h of incubation while free-living cells removed 20% nitrate and 30% phosphate within 36 h of treatment. Blank chitosan beads were responsible for up to 20% nitrate and 60% phosphate uptake at the end of the experiment. Chitosan is a suitable matrix for immobilization of microalgae, particularly Scenedesmus sp., but this system should be improved before its application for water quality control.  相似文献   

14.
A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor? using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed‐batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell‐specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed‐batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed‐batch and 28× more in a 1‐month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013  相似文献   

15.
Summary Immobilized cell technology was used to prepare concentrated cultures ofLactococcus lactis that lost only 22% of viability over a 30-day storage period at 4°C. Concentrated cultures ofL lactis CRA-1 were immobilized in calcium alginate beads and added to glycerol, NaCl or sucrose-NaCl solutions in order to obtain aw readings ranging from 0.91 to 0.97. The suspensions were subsequently placed at 4°C and viability (CFU g–1 of bead) was followed during storage. Viability losses were high at aw readings of 0.95 and 0.97 and pH dropped significantly (up to one unit) in the unbuffered solutions. Addition of 1% soytone or glycerophosphate helphed stabilize pH, and a beneficial effect on viability during storage was observed in the glycerol-soytone mix when the beads were added to the conservation solutions immediately following immobilization. When beads were added to the conservation solution immediately following immobilization, a 70% drop in cell counts occurred during the first 5 days of incubation. Dipping theL lactis-carrying beads in milk for 2h before mixing with the glycerolsoytone 0.93 aw solution reduced this initial 5-day viability loss. Cultures grown in the alginate beads also had good stability in the 0.93 aw glycerol-soytone solution, where 78% of the population was viable after 30 days at 4°C. The process could be used to store immobilized cells at a processing plant, or by suppliers of lactic starters who wish to ship cultures without freezing or drying.  相似文献   

16.
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17‐hydroxyprogesterone (17‐OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 106 cells mL?1 and the specific growth rate was 0.036 ± 0.004 h?1. The maximum MAb titer was 11.94 ± 4.81 μg mL?1 with an average specific MAb production rate of 0.273 ± 0.135 pg cell?1 h?1. A constant impeller tip speed criterion was used for the scale‐up. The specific growth rate (0.040 h?1) and the maximum viable cell density (1.89 × 106 cells mL?1) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T‐flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17‐OHP) and did not compromise the structural integrity of the MAb. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

17.
Summary CHO-K1 cells, an anchorage-dependent line, were entrapped in beads prepared from a Na alginate/polyethylene glycol mixture and grown, through successive passages, to an average maximum density of 4.5×107 viable cells/g of bead. Cell growth and viability was unaffected by repeated alginate re-solubilization and reformation of the gel beads through five passages.  相似文献   

18.
We have shown previously that recombinant NS/0 myelomas expressing sufficient amounts of E1B-19K were resistant to apoptosis occurring in the late phase of batch culture and under stressful conditions such as cultivation in glutamine-free medium or following heat shock. However, no significant increase in monoclonal antibodies (MAb) was observed during the prolonged stationary phase of these batch cultures. Here, we show that E1B-19K can enhance cell survival and improve MAb productivity in high cell density perfusion culture. Typically, lymphoid cells grown under steady state in perfusion exhibit decreasing viabilities with concomitant accumulation of apoptotic cells. By modulating the ability of these cells to resist to induction of apoptosis in low nutrient environment, a 3-fold decrease in specific death rate from 0.22 day-1 for NS/0 control to 0.07 day-1 for E1B-19K cells was achieved, resulting in a significant improvement in cell viability throughout perfusion. E1B-19K cells at the perfusion plateau phase also exhibited a 3-fold reduction in specific growth rate concomitant with a lower percentage of S and higher percentage of G1 phase cells. This was associated with a 40% decrease in specific oxygen consumption rate, likely related to a reduction in the specific consumption rates of limiting nutrient(s). Expression of E1B-19K consequently had a significant impact on the steady-state viable cell density, allowing maintenance of 11.5 x 10(6) E1B-19K cells/mL versus 5.9 x 10(6) control NS/0 cells/mL for the same amount of fresh medium brought into the system (half a volume per day). Whereas MAb concentrations found in perfusion culture of control NS/0 myelomas were almost 3-fold higher than those found in batch culture; in the case of E1B-19K-expressing myelomas, the MAb concentration in perfusion was more than 7-fold higher than in batch. This was attributable to the 2-fold increase in viable cell plateau and to a 40% increase in the perfusion to batch ratio of specific MAb productivity (2.2-fold for E1B-19K myelomas versus 1.6-fold for NS/0 control).  相似文献   

19.
Summary Mouse hybridoma cells were succesfully cultivated for more than 640 hours in the interparticle spaces of a tubular reactor packed with spherical glass beads. The maximum monoclonal antibody (MAb) concentration attained was 110 mg/l and a viable cell density in the order of 1 × 107 cells/ml was achieved. A productivity per reactor void volume of 5.2 mg MAb/hr/l was obtained, which is comparable to the best systems currently in use.  相似文献   

20.
The accumulation and volatilization of mercury by non-immobilized and immobilizedChlorella emersonii have been studied in batch culture systems. Reduction in the mercury concentration in the growth medium by non-immobilized cells was highly dependent on inoculum density, whilst reduction in mercury concentration by immobilized cells was rapid at all inoculum densities. Mercury accumulation by immobilized cell biomass was significantly greater than by non-immobilized cells with 106 and 105 cells bead–1 or ml–1. Volatilization of mercury by non-immobilized cell systems was greatest at higher inoculum densities, whereas more mercury was volatilized from immobilized cell systems at lower inoculum densities, and was greatest with unstocked alginate beads. Thus, in immobilized systems, mercury removal from solution is complex and involves mercury accumulation by the cells and volatilization by the matrix and cells. Further studies of mercury accumulation and volatilization by unstocked immobilization matrices revealed that agarose volatilized much less mercury than alginate or agar. The precise mechanism of mercury volatilization by alginate remains unclear, though it is thought to be a chemical effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号