首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyphae of the fungus Pythium ultimum extend by tip growth. The use of surface markers demonstrates that cell expansion is limited to the curved portion of the hyphal apex. Growing and non-growing regions are reflected in internal organization as detected by light and electron microscopy. The young hypha consists of three regions: an apical zone, a subapical zone and a zone of vacuolation. The apical zone is characterized by an accumulation of cytoplasmic vesicles, often to the exclusion of other organelles and ribosomes. Vesicle membranes are occasionally continuous with plasma membrane. The subapical zone is non-vacuolate and rich in a variety of protoplasmic components. Dictyosomes are positioned adjacent to endoplasmic reticulum or nuclear envelope, and vesicles occur at the peripheries of dictyosomes. A pattern of secretory vesicle formation by dictyosomes is described which accounts for the formation of hyphal tip vesicles. Farther from the hyphal apex the subapical zone merges into the zone of vacuolation. As hyphae age vacuolation increases, lipid accumulations appear, and the proportional volume of cytoplasm is reduced accordingly. The findings are integrated into a general hypothesis to explain the genesis and participation of cell components involved directly in hyphal tip growth: Membrane material from the endoplasmic reticulum is transferred to dictyosome cisternae by blebbing; cisternal membranes are transformed from ER-like to plasma membrane-like during cisternal maturation; secretory vesicles released from dictyosomes migrate to the hyphal apex, fuse with the plasma membrane, and liberate their contents into the wall region. This allows a plasma membrane increase at the hyphal apex equal to the membrane surface of the incorporated vesicles as well as a contribution of the vesicle contents to surface expansion.  相似文献   

2.
Summary The hyphal tip ofSclerotium rolfsii was examined after fixation by freeze substitution. The Spitzenkörper consisted of a dense mass of apical vesicles and microvesicles surrounding a vesicle-free zone. Linear arrangements of microvesicles were occasionally observed within the Spitzenkörper. Abundant microfilaments were seen within the Spitzenkörper region, often in close association with apical vesicles and microvesicles. Microtubules passed through the Spitzenkörper and terminated at the plasmalemma at the extreme hyphal apex. Filasomes were mostly observed within the apical region and were in close proximity to the plasmalemma. Rough ER, mitochondria, microtubules, and vacuoles were abundant in the subapical region and were usually oriented parallel to the long axis of the hypha. Ribosomes were aligned on the outer surfaces of mitochondria. Golgi body equivalents were observed throughout the subapical region and appeared as inflated cisternae of varying shapes and electron opacities. Relationships to other basidiomycetous hyphal tip cells are discussed.Abbreviations AV apical vesicle - C Celsius - diam diameter - f filasome - G Golgi body equivalent - h hour - nm nanometer - M mitochondria - ME membranous elements; min minute - MV microvesicle - MVB multivesicular body - N nucleus - OsO4 osmium tetroxide - R ribosome - ER endoplasmic reticulum - S Spitzenkörper - Va vacuole - m micrometer  相似文献   

3.
The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.  相似文献   

4.
The microtubular system in growing protoplasts of Saccharomyces uvarum was visualized by immunofluorescence using the monoclonal antitubulin antibody TU 01. We confirmed the coexistence of regular spindle configuration and extensive cytoplasmic networks in growing protoplasts and also observed a distinct distortion of cytoplasmic microtubules in association with wall removal. After a short period for recovery of protoplasts in nutrient medium a restitution of cytoplasmic microtubules and their resumed contact with the protoplast surface was observed. Treatment of growing protoplasts with nocodazole resulted in the disappearance of spindle and cytoplasmic microtubules in the relevant fraction of the protoplast population. In carbendazime (MBC)-arrested protoplasts spindle microtubules were absent but cytoplasmic microtubules associated with spindle pole bodies were clearly visible. Microtubule reassembly on spindle pole bodies occurred within 30 min after washing out nocodazole as well as carbendazime. The approach using protoplasts suggests a simple way in which the differential effect of antimicrotubule agents can be experimentally tested and the microtubule organizing activity of yeast protoplasts visualized at the population level.  相似文献   

5.
Summary Light and transmission electron microscopy were used to examine hyphal tip cells of the fungusAllomyces macrogynus (Chytridiomycetes). A well defined apical body, i.e., Spitzenkörper, was observed at the extreme apex of hyphal cells. This distinctive, spherical cytoplasmic region consisted of a granular matrix devoid of ribosomes and most organelles. To our knowledge this is the first report describing such a structure in hyphae of an aseptate fungus. Vesicles (45–65 nm diameter) were concentrated in the peripheral cytoplasm of the apex, while relatively few were observed within the Spitzenkörper. Filasomes, spherical patches of dense fibrillar material containing a microvesicle core, were abundant in the apical regions near the plasma membrane. Microtubules traversed the Spitzenkörper at various angles and were in close association with the plasma membrane. Microfilaments were observed as individual elements in the cytoplasm or were organized into bundles. Individual microfilaments were frequently in close association with the plasma membrane, vesicles and microtubules. In the immediate subapical region mitochondria, multivesicular bodies, microbodies, Golgi equivalents and nuclei were abundant.Abbreviations CW cell wall - F filasome - M mitochondria - N nucleus - PM plasma membrane - TEM transmission electron microscopy  相似文献   

6.
Summary The effects of methyl benzimidazole-2-yl carbamate (MBC) on microtubule and actin cytoskeleton were analyzed by indirect immunofluorescence and transmission electron microscopy in a wild-type strain and a benomyl-resistant mutant (benA 10) ofAspergillus nidulans. The treatment of the wild-type strain with sublethal doses of MBC not only caused depolymerization of cytoplasmic microtubules (MTs), but also changed the pattern of actin at the hyphal tips. In the MBC-treated hyphae, the actin fluorescence was concentrated at the very tip region of the hypha, whereas in the control hyphae, the actin fluorescence was weak at the very tip and strong below the tip. The dose of MBC used for the wild-type strain did not depolymerize the MTs or modify the actin organization at the apex in the mutant strain, which confirmed that the change in actin distribution in the wild-type strain was due to the disruption of MTs. In the mutant strain, a seven times higher concentration of MBC than in the wild-type strain was required to depolymerize MTs and to alter the actin organization at the apex. The ultrastructural study of the MBC-treated hyphae revealed that the area containing apical vesicles was larger and the number of microvesicles was higher than in control hyphae. These changes probably resulted from the disassembly of MTs and the reorientation of actin cytoskeleton in MBC-treated apexes and suggested that MTs would organize the actin at the apex, which in turn would restrict the vesicle fusion to a narrow area at the hyphal tip. In treated hyphae of both strains without cytoplasmic MTs, mitotic spindles were detected although in lower number and with slightly modified morphology.Abbreviations DAPI 4,6-diamidino-2-phenylindole - DMSO dimethyl sulfoxide - EM electron microscopy - ER endoplasmic reticulum - IIP indirect immunofluorescence - MBC methyl benzimidazole-2-yl carbamate - MTs microtubules  相似文献   

7.
Hyphal tips of fungi representing Oömycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes were examined by light and electron microscopy and compared with respect to their protoplasmic organization. In all fungi studied, there is a zone at the hyphal apex which is rich in cytoplasmic vesicles but nearly devoid of other cell components. Some vesicle profiles are continuous with the plasma membrane at the apices of these tip-growing cells. The subapical zones of hyphae contain an endomembrane system which includes smooth-surfaced cisternae associated with small clusters of vesicles. The findings are consistent with the hypothesis that vesicles produced by the endomembrane system in the subapical region become concentrated in the apex where they are incorporated at the expanding surface. Septate fungi (Ascomycetes, Basidiomycetes, and Deuteromycetes) have an apical body (Spitzenkörper) which is associated with growing hyphal tips. In electron micrographs of these fungi, an additional specialized region within the accumulation of apical vesicles is shown for the first time. This region corresponds on the bases of distribution among fungi, location in hyphae, size, shape and boundary characteristics to the Spitzenkörper seen by light microscopy. This structure is not universally associated with tip growth, whereas apical vesicles are widespread among tip-growing systems.  相似文献   

8.
We have used video-enhanced light microscopy and digital image processing to characterize the intracellular motility and positioning of vesicles ( approximately 1-microm diameter) and mitochondria in growing hyphal tip cells of Allomyces macrogynus. These observations were coupled with cytoskeletal inhibitory experiments to define the roles of the microtubule and actin cytoskeletons in organelle translocation and positioning. Vesicles and mitochondria were abundant in apical and subapical hypha regions. Vesicles traveled along paths that were parallel to the longitudinal axis of the cell. Anterograde (i.e., toward the hyphal apex) and retrograde (i.e., away from the hyphal apex) movements of vesicles occurred at average rates of 4.0 and 2.2 microm/s, respectively. Bidirectional travel of vesicles along common paths was noted in the cortical cytoplasm. Mitochondria were aligned mostly parallel to the long axis of the hypha, except those extending into the hyphal apex, which were oriented toward the Spitzenk?rper. In regions of the subapical hypha mitochondria were often restricted to the cortical cytoplasm and nuclei occupied the central cytoplasmic region. Mitochondria displayed rapid anterograde movements reaching speeds of 3.0 microm/s, but primarily maintained a constant position relative to either the advancing cytoplasm or the lateral cell wall. Cytoskeletal disruption experiments showed that the positioning of mitochondria and motility of vesicles and mitochondria were microtubule-based and suggested that the actin cytoskeleton played uncertain roles.  相似文献   

9.
Mary Syrop 《Protoplasma》1973,76(3-4):309-314
Summary The fine structure of the growing region of the aerial hyphae ofRhizopus sexualis is described. The protoplasmic components are organised in zones. At the hyphal tip there are abundant cytoplasmic vesicles and few ribosomes. Mitochondria, ribosomes, and endoplasmic reticulum are present in the sub-apical region. Nuclei occur in the posterior subapical region, some have been observed containing microtubules and bearing long projections. Microtubules have been observed extending for some distance through the cytoplasm.  相似文献   

10.
Ustilago maydis is a dimorphic Basidiomycete fungus with a yeast-like form and a hyphal form. Here we present a comprehensive analysis of bud formation and the actin and microtubule cytoskeletons of the yeast-like form during the cell cycle. We show that bud morphogenesis entails a series of shape changes, initially a tubular or conical structure, culminating in a cigar-shaped cell connected to the mother cell by a narrow neck. Labelling of cells with concanavalin A demonstrated that growth occurs at bud tip. Indirect immunofluorescence studies revealed that the actin cytoskeleton consists of patches and cables that polarize to the presumptive bud site and the bud tip and an actin ring that forms at the neck region. Because the bud tip corresponds to the site of active cell wall growth, we hypothesize that actin is involved in secretion of cell wall components. The microtubule cytoskeleton has recently been shown to consist of a cytoplasmic network during interphase that disassembles at mitosis when a spindle and astral microtubules are formed. We have carried out studies of U. maydis cells synchronized by the microtubule-depolymerizing drug thiabendazole which allow us to construct a temporal sequence of steps in spindle formation and spindle elongation during the cell cycle. These studies suggest that astral microtubules may be involved in early stages of spindle orientation and migration of the nucleus into the bud and that the spindle pole bodies may be involved in reestablishment of the cytoplasmic microtubule network.  相似文献   

11.
Summary Light and electron microscopic observations on vegetative hyphae ofAllomyces arbuscula revealed the specialized organization of the tip. There were some minor differences related to culture conditions, but the main ultrastructural features common to all hyphal tips disclosed a special type of organization distinct from that of other fungi. A crescent-shaped apical zone consisted of vesicles and membrane cisternae embedded in a granular matrix. Vesicles fused with the apical plasmalemma and presumably contributed to its expansion and to wall growth. The apical zone contained few ribosomes and generally no other organelles. Mitochondria were concentrated in the immediate subapical zone and scattered through the remainder of the hyphae, as were microbodies. Microtubules formed an asterlike structure with its center in the apical zone. Proximally of the apex, microtubules were axially oriented. Nuclei occurred only a certain distance from the tip. The elements of the apex may maintain the polarity of the hyphae via a gradient and hold it in a state of vegetative growth.  相似文献   

12.
Summary The ultrastructure of untreated germinating cells ofBlastocladiella emersonii was compared with that of cells inhibited by Actinomycin D and cycloheximide. The rhizoids and germ tubes of the fungus contained longitudinally oriented microtubules and apical clusters of cytoplasmic vesicles. The vesicles, apparently derived from Golgi apparatus equivalents also described in this paper, were involved in the tip growth of the germ tubes and rhizoids. Zoospores germinated in Actinomycin D encysted and developed short germ tubes containing microtubules and apical vesicles before further development was arrested. Zoospores treated with cycloheximide encysted but did not develop germ tubes.  相似文献   

13.
R. J. Howard  J. R. Aist 《Protoplasma》1977,92(3-4):195-210
Summary Effects of treatment with methyl benzimidazole-2-ylcarbamate (MBC) on living hyphal tip cells ofFusarium acuminatum were determined with phase contrast light microscopy. These included (i) displacement of mitochondria from hyphal apices, (ii) disappearance of Spitzenkörpers, (iii) reduction of linear growth rate, and (iv) metaphase arrest of all mitoses: responses i–iii were not a result of effects on mitosis. Since all of these responses theoretically could have resulted from an MBC effect on microtubule structure and/or function, heavy water (D2O) was used to counteract MBC. Treatments of hyphae with MBC + D2O caused quantitative responses, i–iii above, intermediate between those to the separate reagents, and some nuclei of these hyphae were not arrested at mitosis. Moreover, several nuclei fragmented (multimicronucleation) in a manner apparently similar to mammalian nuclei treated with antitubulin agents. Thus, the effects of MBC on apical organization, Spitzenkörper integrity, hyphal growth and mitosis could have been mediated through interference with microtubules.  相似文献   

14.
The mitotic asters of the fungus, Nectria haematococca, pull on the spindle pole bodies during anaphase B and help to elongate the central spindle. Because these asters are invisible in vivo, studies of their functions during mitosis have been limited. Invisible asters in other organisms can be studied in vivo because of visible, membranous organelles that are held or transported within them. This is the first report of intra-astral motility of organelles in a fungus, and it lays the foundation for additional studies of aster function in vivo. Using phase-contrast, video-enhanced microscopy, we observed directed motility of mitochondria, small vesicles of various kinds, lipid bodies and, rarely, small vacuoles within the astral region during anaphase B. Both bidirectional motility--toward and away from the spindle pole body--and reversal of direction by an individual organelle were common. Organelles usually did not tend to accumulate either within the aster or near the spindle pole. They were drawn toward the spindle pole body from up to 5.0 microns away. Average velocities were 2.3 to 3.2 microns/s, depending on the organelle and its direction of movement. Transmission electron microscopy revealed apparent cross bridging between astral microtubules and mitochondria, vesicles, endoplasmic reticulum, microbodies, and vacuoles. The antimicrotubule drug, methylbenzimidazole-2-ylcarbamate (MBC), destroyed astral microtubules and virtually eliminated intra-astral motility in vivo, whereas the antiactin drug, cytochalasin E, did not greatly affect the frequency of intra-astral motility episodes. The results suggest a role for astral microtubules in intra-astral motility in this fungus.  相似文献   

15.
A lysosomal system was demonstrated in hyphal tip cells of Sclerotium rolfsii by light and electron microscopy observations of the sites of acid phosphatase activity visualized by a modified Gomori lead nitrate method. The cytochemical reaction product was found to be present in numerous vacuoles, each aout 0.5 mum in diameter, which were seen as chains of spheres when viewed with the light microscope. They usually did not occur in the first 30 to 40 mum of the hyphal tip cell, but were concentrated in a zone extending from 30 to 200 mum from the hyphal apex. As shown by the electron microscope, the vacuoles were sometimes interconnected by narrow channels. Acid phosphatase reaction product was also occasionally localized in vacuoles of the older hyphal cells, but never in apical vesicles, lipid bodies, or microbodies. It is proposed that this vacuolar system may orginate from the endoplasmic reticulum.  相似文献   

16.
This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued), a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.  相似文献   

17.
Summary The tubulin cytoskeleton in hyphal tip cells ofAllomyces macrogynus was detected with an -tubulin monoclonal antibody and analyzed with microscopic and immunoblot techniques. The -tubulin antibody identified a 52 kilodalton polypeptide band on immunoblots. Immunfluorescence data were collected from formaldehyde-and cryofixed hyphae. Both methods provided similar images of tubulin localization. However, cryofixation yielded more consistent labeling and did not require detergent extraction or cell-wall lytic treatments. Tubulin was primarily localized as microtubules observed in the peripheral and central cytoplasmic regions and in mitotic spindles. Cytoplasmic microtubules were oriented parallel to the cells' longitudinal axis, with central microtubules more often varied in their alignment, and emanated from a region in the hyphal apex resulting in an apical zone of bright fluorescence. A thin layer of microtubules appearing as bands of fluorescence encircled many nuclei. Discrete spots of fluorescence were also associated with nuclei. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins that may be involved in the regulation of microtubule nucleation, stained centrosomes but not apical regions of hyphae. Nocodazole was used to depolymerize the microtubule network and reveal its regions of origin. A hocodazole concentration of 0.01 g/ ml (3.3× 10–8M) provided a 70 to 75% inhibition of hyphal tip growth and was used throughout this study. The number of cells having an apical zone of fluorescence declined by 15 min of exposure. This zone was present in only a few cells after 60 min. After 30 min, the central cytoplasm consisted of small microtubule fragments and nuclear-associated spots. A small number of peripheral microtubules and nuclear-associated spots persisted throughout nocodazole treatments. Spindle microtubules were restored by 30 min after removal of nocodazole. This was followed by the reappearance of the apical zone of fluorescence and then by central and peripheral cytoplasmic microtubules. Apical fluorescence coincided with the presence of a Spitzenkörper. The results suggest that the Spitzenkörper and centrosome function as centers of microtubule nucleation and organization during hyphal tip growth in this fungus.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - IB incubation buffer - LN2 liquid nitrogen - LSCM laser scanning confocal microscopy - MTOCs microtubule-organizing centers - PBS phosphate buffered saline - PIPES 1,4-piperazinedietha-nesulfonic acid - PFB PIPES fixation buffer - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - SPB spindle pole body - TEM transmission electron microscopy - YpSs yeast extract-inorganic phosphate-soluble starch  相似文献   

18.
H. C. Hoch  R. C. Staples 《Protoplasma》1985,124(1-2):112-122
Summary The microtubule and F-actin cytoskeleton of nondifferentiated germlings ofUromyces phaseoli was studied using immunofluorescence methodologies. The microtubules were oriented mostly parallel to the longitudinal axis of the hypha. Microtubule depolymerizing agents, such as cold, demecolcine, griseofulvin and nocodazole, were effective in destroying the microtubule network, but not the F-actin system. Repolymerization of microtubules, following release from these agents, occurred first in the hyphal apices and not near the nuclei or spindle pole bodies. It was concluded that the microtubule nucleating region in such fungal cells is located in the apical regions. Enhanced microtubule arrays were visualized following incubation of the cells in taxol, an agent known to favor microtubule polymerization.  相似文献   

19.
Limbach C  Staehelin LA  Sievers A  Braun M 《Planta》2008,227(5):1101-1114
We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary A dynamic population of cytoplasmic F-actin was observed with electroporated rhodamine phalloidin (RP) staining in growing hyphae ofSaprolegnia ferax. This central actin population was distinct from the fibrillar peripheral network previously described in chemically fixed hyphae in that it was diffuse, pervaded the entire cytoplasm and was most concentrated in the central cytoplasm 8.4 m from the tip. The peripheral network did not stain with electroporated RP. The apical concentration of central cytoplasmic actin was only present in growing hyphae and developed prior to tip extension. It co-localized with the polarized distribution of mitochondria and endoplasmic reticulum in the tip, suggesting that it functions in positioning these organelles during tip growth. Within the central actin there was a consistent apical cleft which only occurred in growing hyphae and whose position predicted the direction of tip growth. This cleft was coincident with the known accumulation of apical wall vesicles, suggesting that it is either established by vesicle exclusion of the central actin network or is permeated by a portion of the in vivo unstained peripheral network. Photobleaching studies showed that in both growing and non-growing hyphae, cytoplasmic actin continually and rapidly moved from subapical regions to the tip where it accumulated. It mostly moved forward at the rate of tip growth, while some also left the tip, presumably to populate subapical regions.Abbreviations RP rhodamine phalloidin - F-actin filamentous actin - DIC Nomarski differential interference contrast - FITC fluorescein isothiocyanate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号