首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prolactin releasing peptide (PrRP) is involved in regulating food intake and body weight homeostasis, but molecular details on the activation of the PrRP receptor remain unclear. C‐terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8‐20) amino acids, respectively, have been suggested to be fully active. The data presented herein indicate this is true for the wildtype receptor only; a 5‐10‐fold loss of activity was found for PrRP8‐20 compared to PrRP20 at two extracellular loop mutants of the receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy performed in TFE and SDS. Additionally, previously reported NMR data, combined with ROSETTA NMR, were employed to determine the structure of amidated PrRP20. The structural ensemble agrees with the spectroscopic data for the full‐length peptide, which exists in an equilibrium between α‐ and 310‐helix. We demonstrate that PrRP8‐20's reduced propensity to form an α‐helix correlates with its reduced biological activity on mutant receptors. Further, distinct amino acid replacements in PrRP significantly decrease affinity and activity but have no influence on the secondary structure of the peptide. We conclude that formation of a primarily α‐helical C‐terminal region of PrRP is critical for receptor activation. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 273–281, 2013.  相似文献   

2.
The recently discovered prolactin-releasing peptide (PrRP) binds to the PrRP receptor and is involved in endocrine regulation and energy metabolism. However, its main physiological role is currently unknown. Two biologically active isoforms of PrRP exist: the 31 (PrRP31) and the 20 (PrRP20) amino acid forms, which both contain a C-terminal Phe amide sequence. In the present study, the PrRP receptor was immunodetected in three rodent tumor pituitary cell lines: GH3, AtT20 and RC-4B/C cells. The saturation binding of radioiodinated PrRP31 to intact cells demonstrated a Kd in the 10−9 M range and a Bmax in the range of tens of thousands binding sites per cell. For binding to RC-4B/C cells, both PrRP31 and PrRP20 competed with 125I-PrRP31 with a similar Ki. The C-terminal analog PrRP13 showed lower binding potency compared to PrRP31 and PrRP20. All PrRP analogs increased the phosphorylation of MAPK/ERK1/2 (mitogen-activated phosphorylase/extracellular-regulated kinase) and CREB (cAMP response element-binding protein) in RC-4B/C cells. Additionally, prolactin release was induced by the PrRP analogs in a dose-dependent manner in RC-4B/C cells. Finally, food intake after intracerebroventricular administration of PrRP analogs in fasted mice was followed. Both PrRP31 and PrRP20 decreased food intake, but PrRP13 did not show significant effect. Studies on pituitary cell lines expressing the PrRP receptor are more physiologically relevant than those on cells transfected with the receptor. This cell type can be used as a model system for pharmacological studies searching for PrRP antagonists and stable effective PrRP agonists, as these drugs may have potential as anti-obesity agents.  相似文献   

3.
We compared levels of prolactin-releasing peptide (PrRP) mRNA expression in mouse medulla at different stages of pregnancy and lactation. Mouse medulla samples were collected on days 6, 12 and 18 of pregnancy and lactation, respectively (six per group), for mRNA. Expression levels of PrRP mRNA in the medulla were measured by semi-quantitative RT-PCR, with glyceraldehyde 3-phosphate dehydrogenase as a control. PrRP mRNA was highly expressed in mouse medulla oblongata on day 6 of pregnancy (0.53), followed by 0.43 at lactation day 6, and 0.42 at lactation day 12. The expression level of PrRP mRNA on days 12 and 18 of pregnancy and day 18 of lactation shared the same value of 0.36. PrRP mRNA levels during lactation decreased slightly compared with that during pregnancy, but the differences between them were not significant. In summary, PrRP mRNA levels in the medulla oblongata remain relatively stable during pregnancy and lactation. This is evidence that medulla PrRP is not involved in the regulation of prolactin secretion.  相似文献   

4.
We administered prolactin-releasing peptide (PrRP) or anti-PrRP antiserum to goldfish in fresh water and analyzed their effects on prolactin and osmoregulatory mechanisms. The pituitary mRNA level of prolactin increased by PrRP but decreased by anti-PrRP. The rate of water inflow in the gills decreased by PrRP and increased by anti-PrRP, showing that PrRP restricts branchial water permeability, as also restricted by prolactin. PrRP also expanded the mucous cell layers on the scales, which may restrict efficiently water inflow by the mucous system. Eventually, the plasma osmotic pressure decreased by anti-PrRP. We conclude that PrRP is essential to maintain prolactin levels and osmotic balance in fresh water.  相似文献   

5.
Nerve growth factor (NGF) has previously been shown to increase the rate of adhesion of PC-12 pheochromocytoma cells to cell culture dishes. This increase in the rate of adhesion was postulated to be important in NGF-mediated neurite outgrowth. We now report that epidermal growth factor (EGF) is also able to increase the rate of adhesion of PC-12 cells to cell culture dishes, but does not elicit neurite outgrowth. The dose-response curve for EGF is bell-shaped, in contrast to the more classically shaped dose-response curve obtained with NGF. Tetradecanoyl-phorbol-acetate (TPA), a potent tumor promoter, blocks the EGF-induced increase in adhesion rate of PC-12 cells, but does not alter the NGF-induced increase in adhesion rate. TPA shifts the EGF binding curve to the right for PC-12 cells, but does not alter maximal EGF binding at saturating concentrations of EGF. The binding of NGF to PC-12 cells is not affected by TPA. NGF-induced neurite formation by PC-12 cells is unaffected by TPA, in contrast to the previously reported delay of neurite outgrowth of serum-deprived neuroblastoma cells and NGF-exposed chick embryonic ganglia cells. NGF and EGF both cause a decrease in the number of short microvilli and an increase in the number of long microvilli on PC-12 cells. TPA blocks the decrease in the number of short microvilli in EGF-treated cells, but not in NGF-treated cells. Long microvilli formation is blocked by TPA in both conditions, suggesting the latter are not involved in the increased adhesion rates.  相似文献   

6.
7.
In this study, we investigated the effect of chronic repeated restraint (RR) on prolactin-releasing peptide (PrRP) expression. In the brainstem, where PrRP colocalize with norepinephrine in neurons of the A1 and A2 catecholaminergic cell groups, the expression of tyrosine hydroxylase (TH) has also been examined. In the brainstem, but not in the hypothalamus, the basal PrRP expression in female rats was higher than that in the males that was abolished by ovariectomy. RR evoked an elevation of PrRP expression in all areas investigated, with smaller reaction in the brainstems of females. There was no gender-related difference in the RR-evoked TH expression. Elevation of PrRP was relatively higher than elevation of TH, causing a shift in PrRP/TH ratio in the brainstem after RR. Estrogen α receptors were found in the PrRP neurons of the A1 and A2 cell groups, but not in the hypothalamus. Bilateral lesions of the hypothalamic paraventricular nucleus did not prevent RR-evoked changes. Elevated PrRP production parallel with increased PrRP/TH ratio in A1/A2 neurons indicate that: (i) there is a clear difference in the regulation of TH and PrRP expression after RR, and (ii) among other factors this may also contribute to the changed sensitivity of the hypothalamo-pituitary–adrenal axis during chronic stress.  相似文献   

8.
9.
Nicotine has been reported to regulate food intake and body weight. But the mechanisms underlying these roles have not been fully elucidated. In the present study, we showed that acute administration of nicotine (0.5 mg/kg s.c.) could activate prolactin-releasing peptide (PrRP)-bearing neurons in the A2 area of the NTS of rats, suggesting that PrRP may be associated with nicotine-induced effects in the central nervous system (CNS). We next treated rats with nicotine chronically (4 mg/kg/day for 7 days i.p.), and the results showed that the body weight was strongly reduced and food intake was greatly suppressed compared to the vehicle control group (p<0.01). Immunocytochemical studies revealed that PrRP-bearing neurons in the NTS were evidently activated after chronic administration of nicotine, suggesting that PrRP was involved in the regulation of nicotine-mediated body weight loss and food intake suppression in rats. We also found that acute/chronic administration of nicotine activated PrRP-negative neurons in the NTS, and the majority of these neurons were shown to be TH-negative, suggesting that noncatecholaminergic, PrRP-negative neurons in the NTS are associated with the roles of nicotine. Nicotine has also been shown to stimulate the secretion of ACTH, a stress responsive hormone. In the present study, rats received nicotine (0.5 mg/kg s.c.) or saline followed by restraint stress for 30 min. The immunocytochemical results showed that nicotine/stress and saline/stress both activated the majority of the PrRP neurons in the NTS, there being no significant difference between the two treatments (p>0.05). Nicotine/stress also greatly activated PrRP/TH-negative neurons in the NTS. Saline/stress, however, caused much lower effect on the activation of PrRP/TH-negative neurons. In addition, the activation effect of nicotine/stress on PrRP/TH-negative neurons was much stronger than that of nicotine alone (p<0.01). These results indicated that PrRP was associated with stress responses, but it had little effect on nicotine-mediated stress responses. On the other hand, nicotine and restraint stress may synergistically activate PrRP/TH-negative neurons in the NTS. Taken together, our data show that PrRP is involved in the nicotine-induced regulation of body weight and food intake, but may not be involved in the mediation of nicotine on stress responses. PrRP/TH-negative neurons in the NTS are also associated with the roles of nicotine in the CNS.  相似文献   

10.
V Csernus  A V Schally  K Groot 《Peptides》1999,20(7):843-850
Antagonistic analogs of growth hormone-releasing hormone (GHRH) inhibit growth of various human cancers both in vivo and in vitro. GHRH, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide stimulate cyclic AMP (cAMP) release from various human cancer cell lines in vitro. Thus, in the present study, we investigated the effects of antagonistic analogs of GHRH on the GHRH- and VIP-induced cAMP release from cultured human cancer cells in a superfusion system. Various human cancer cell lines were exposed to human GHRH(1-29)NH2 (2-20 nM) or VIP (0.1-5 nM) repeatedly for 12 min or continuously for 96 min. GHRH antagonist MZ-5-156 at 100 to 200 nM concentration inhibited the GHRH- or VIP-induced cAMP release from mammary (MDA-MB-468), prostatic (PC-3), and pancreatic (SW-1990 and CAPAN-2) cancer cells. These results show that antagonistic analogs of GHRH suppress the stimulatory effects of GHRH and VIP on the cAMP production of various cancer cells. Because cAMP is a potent second messenger controlling many intracellular functions, including the stimulation of cell growth, an inhibition of autocrine/paracrine action of GHRH by the GHRH antagonists may provide the basis for the development of new methods for cancer treatment.  相似文献   

11.
Takayanagi Y  Onaka T 《The FEBS journal》2010,277(24):4998-5005
Subsequent to the isolation of the first recognized RFamide neuropeptide, FMRFamide, from the clam, a large number of these peptides have been identified. There are now five groups of RFamide peptides identified in mammals. RFamide peptides show diversity with respect to their N-terminal sequence and biological activity. RFamide peptides have been implicated in a variety of roles, including energy metabolism, stress and pain modulation, as well as effects in the neuroendocrine and cardiovascular systems. In the present minireview, we focus on prolactin-releasing peptide (PrRP) and RFamide related peptide (RFRP) with respect to their roles in the control of energy metabolism and stress responses. Both food intake and stressful stimuli activate PrRP neurons. The administration of PrRP affects energy metabolism and neuroendocrine systems. PrRP-deficient or PrRP receptor-deficient mice show abnormal energy metabolism and/or stress responses. On the other hand, RFRP neurons are activated by stressful stimuli and the administration of RFRP induces neuroendocrine and behavioral stress responses. Taken together, these data suggests that PrRP and RFRP neurons play a role in the control of energy metabolism and/or stress responses.  相似文献   

12.
Deregulated c-fos expression in the rat pheochromocytoma cell line, PC-12, causes pronounced downregulation of nerve growth factor (NGF)-induced c-fos and c-jun activation, accompanied by a block in NGF-induced differentiation of PC-12 cells. The FOS-expressing PC-12 cells were exposed to diverse agents such as NGF, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), dibutyryl cyclic adenosine 3',5' monophosphate (db cAMP), and Ca-ionophore; and the expression of egr-1, c-fos, c-jun, jun-B, and jun-D was analyzed. Pronounced downregulation of c-fos, c-jun, and--to a lesser extent--jun-B was observed on treatment with NGF, bFGF, db cAMP, and Ca-ionophore, whereas EGF-induced activation of these early response genes was not inhibited in FOS-expressing PC-12 cells. Ca-ionophore- and db cAMP-induced egr-1 activation in PC-12 fos cells was completely inhibited. Both parent and PC-12 fos cells expressed similar high basal levels of jun-D, whose expression was the least regulatable by all of these agents. Transfection of fos promoter-chloramphenicol acetyltransferase (promoter-CAT) plasmid into these stable FOS-expressing PC-12 cells revealed that these effects are exerted at the fos promoter level.  相似文献   

13.
Two-dimensional gel electrophoresis revealed two protein spots, a (molecular weight 70,000, pI 4.6) and b (molecular weight 69,000, pI 4.4) in PC-12 cells (rat pheochromocytoma cells). When the cells were induced to differentiate with nerve growth factor, the amount of protein in spot a, and later spot b increased with time, then the amount in both spots gradually decrease to undetectable level. These spots were not detected in adult rat brain nor in other cell lines of rat and mouse. Thus, these proteins can be used as markers to follow the differentiation of PC-12 cells.  相似文献   

14.
Trophoblast giant cells in the mouse placentas are polyploid cells that form as a result of endoreduplication. The giant cells form the outermost layer of the extraembryonic compartment and produce a number of pregnancy-specific hormones, including prolactin family members. Here we demonstrate that trophoblast giant cells are increased, and display upregulation of prolactin releasing peptide (PrRP) receptor in the p53-null (p53(-/-)) embryonic placentas. At day 13.5 of gestation, the weight of p53(-/-) placentas was less than that of both wild-type and p53(+/-) placentas. In p53(-/-) placentas, the spongiotrophoblast layer was significantly decreased in thickness, and the trophoblast giant cells were observed not only in the outer layer of placentas but in both the spongiotrophoblast layer and the labyrinthine layer. The giant cells spread over the spongiotrophoblast and labyrinthine layer in p53(-/-) placentas displayed more intensive expression of immunoreactive PrRP receptor than in wild-type placentas. Previous studies indicated that the association between PrRP and PrRP receptor physiologically involves in the expression and secretion of the peptide hormones, including prolactin and growth hormones. These results suggest that p53 may regulate the differentiation of trophoblast giant cells, and may control the physiological PrRP stimuli in mouse placentas.  相似文献   

15.
Prolactin-releasing peptide (PrRP) is a novel peptide found in bovine hypothalamus as an endogenous ligand of an orphan G-protein-coupled receptor (hGR3). It is known that PrRP is widely distributed and plays roles in the central nervous system (CNS). In particular, PrRP acts as a neurotransmitter that mediates stress and activates the hypothalamo-pituitary-adrenal axis. On the other hand, only a few studies have so far been performed on PrRP in peripheral tissues. Among peripheral tissues, appreciable levels of PrRP are found only in the adrenal gland; however, the PrRP-producing cells in the adrenal gland have not been identified. In this study, we detected PrRP mRNA in the rat adrenal medulla. So, we tried to identify the PrRP-producing cells in primary culture cells of the adrenal medulla. We found immunopositive PrRP cells among the cultured cells from the adrenal gland, but not in the adrenal gland tissue, by means of immunocytochemistry. The PrRP immunopositive cells were double positive for tyrosine hydroxylase (TH) and for phenylethanolamine N-methyltransferase (PNMT), which indicates that PrRP may be produced in a part of the adrenaline cells in the adrenal gland. This is the first report that PrRP is produced in the adrenaline-containing cells of the adrenal gland.  相似文献   

16.
17.
A potential role of the olfactory rosettes in maintaining prolactin (PRL) and prolactin-releasing peptide (PrRP) levels was examined in the euryhaline silver sea bream (Sparus sarba). The olfactory rosettes were surgically removed in silver sea bream adapted to hypo- (6 ppt) and hyper-osmotic (33 ppt) salinities and the mRNA expression of the two previously identified freshwater-adapting factors, prolactin (PRL) and prolactin-releasing peptide (PrRP), in silver sea bream was measured. The elevation of pituitary PRL and PrRP mRNA expression levels as seen in 6 ppt-adapted fish was abolished by surgical removal of the olfactory rosettes. The PRL and PrRP expression levels in fish adapted to 6 ppt were significantly lowered following olfactory rosette removal. On the other hand, hypothalamic PrRP mRNA expression in 6 ppt-adapted fish did not change. Specific signals for Na(+)-K(+)-ATPase but not CFTR mRNA expression were detected in the surface layers of olfactory epithelial cells by in situ hybridization. The mRNA abundance of CFTR and Na(+)-K(+)-ATPase α and β subunits remained unchanged in the olfactory rosette of silver sea bream adapted to 0, 6, 12, 33 and 50 ppt for 4 weeks and in fish abruptly transferred from 33 ppt to 6 ppt. Data obtained from the olfactory rosette removal experiments suggest a possible role of the olfactory system for maintaining PRL and PrRP expression during hyposmotic acclimation in sea bream.  相似文献   

18.
Stimulation of prolactin release by prolactin-releasing peptide in rats.   总被引:14,自引:0,他引:14  
We have previously reported a hypothalamic peptide that shows specific prolactin (PRL)-releasing activity in vitro, named prolactin-releasing peptide (PrRP). However, its activity in vivo has not yet been shown. In this study, we examined whether PrRP could induce specific PRL release in vivo using normal cycling female and male rats. Intravenous injection of PrRP31 increased plasma PRL levels in rats in a dose-dependent manner. PrRP31 (50 nmol/kg i.v.) significantly (P < 0.05) stimulated plasma PRL levels within 25 min after injection in rats in proestrus, estrus, and metestrus. A higher dose of PrRP31 (500 nmol/kg i.v.) was necessary for a significant increase in plasma PRL levels in male rats. These results clearly indicate that female rats, especially at proestrus, are more sensitive to PrRP-induced PRL secretion than male rats. The effect of PrRP on PRL release is affected considerably by the estrous cycle and sex, which suggests that PrRP sensitivity is controlled by the endogenous hormonal milieu, such as estrogen levels. PrRP31 did not affect other pituitary hormone secretions. The results indicate that PrRP shows specific PRL-releasing activity in vivo as well as in vitro and suggest that it plays an important role in the regulation of PRL release under certain physiological conditions.  相似文献   

19.
20.
Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号