首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The proteins of the 30S ribosomal subunit from Escherichia coli have been separated by reverse-phase high-performance liquid chromatography on a short alkyl chain (C1/C8)-coated phase. The reverse-phase column was connected to a fast protein liquid chromatography (FPLC) system. The 21 proteins of the 30S ribosomal subunit were resolved into 16 peaks. Eleven proteins were isolated in purified form in a single chromatographic run as shown by polyacrylamide gel electrophoresis and amino acid analysis. Interestingly, the retention times of some proteins differed from the retention times observed on other reversed-phase support materials. The results show the speed and resolution of reverse-phase FPLC for both analytical and semi-preparative separations of 30S ribosomal proteins.  相似文献   

2.
We have devised a reliable procedure for the separation of three beta-lactamases of isoelectric focusing points (pI), 5.4, 6.5, and 7.9 by Fast Protein Liquid Chromatography (FPLC System). All of these enzymes were transferable and originated from a ceftazidime and cefotaxime resistant Klebsiella pneumoniae isolated in Bombay, India. The complete separation of the enzymes, achievable by this method, allowed each of the different individual beta-lactamases to be characterized biochemically. This analysis revealed that the enzymes of pI 6.5 and pI 7.9 hydrolysed ceftazidime and cefotaxime, and were responsible for the resistance of K. pneumoniae, and its Escherichia coli J53-2 transconjugant to third generation cephalosporins. The enzyme of pI 5.4 was the TEM-1 beta-lactamase. The beta-lactamase of pI 7.9 appears quite different from any previously reported third generation cephalosporin hydrolysing beta-lactamase, and consequently given the preliminary designation DJP-1. This is also the first example of extended spectrum hydrolysing beta-lactamases found in Asia.  相似文献   

3.
Fast protein liquid chromatography cationic exchange purification to homogeneity of a monoclonal Fab fragment has resulted in an improvement in the quality of crystals for X-ray diffraction studies. This improvement is displayed in a well-defined crystal morphology, reproducibility of crystal growth, and increased resolution of diffraction data.  相似文献   

4.
The direct enantiomeric resolution of albendazole sulfoxide (SOABZ), an anthelmintic drug belonging to the benzimidazole class, is reported on a chiral stationary phase (CSP) synthesized by covalent binding of (S)-N-(3,5-dinitrobenzoyl)tyrosine-O-(2-propen-1-yl) methyl ester on a gamma-mercaptopropyl-silanized silica gel. A comparison with the resolution achieved on commercially available Pirkle-type CSPs obtained from N-(3,5-dinitrobenzoyl) derivatives of (R)-phenyglycine or (S)-phenylalanine is described. Some structurally related chiral sulfoxides including oxfendazole (SOFBZ) are also studied. Optimization of the mobile phase nature and composition is investigated showing that a hexane-dioxane-ethanol ternary mixture affords an almost baseline resolution (Rs = 1.25); however, in this case, albendazole sulfone (SO2ABZ) is eluted between the two sulfoxide enantiomers; accordingly, a hexane-ethanol mobile phase would be preferred for biological samples containing both metabolites. The influence of temperature on the resolution is depicted with a hexane-ethanol mobile phase. Finally, application to the enantiomeric assays of SOABZ in plasmatic extracts of rat, sheep, bovin, and man after oral administration of albendazole (sulfoxidized to SOABZ and SO2ABZ) is reported. Some distortions in the enantiomeric ratios are evidenced depending on the species.  相似文献   

5.
Because chiral liquid chromatography (LC) could become a powerful tool to estimate racemic atenolol quantity, excellent enantiomeric separation should be produced during data acquisition for satisfactory observation of atenolol concentrations throughout the racemic resolution processes. Selection of chiral LC column and analytical protocol that fulfill demands of the ultra fast LC analysis is essential. This article describes the characteristics of atenolol chromatographic separation that resulted from different resolution media and analytical protocols with the use of a Chiralcel® OD column. The chromatograms showed quite different characteristics of the separation process. The single enantiomer and racemic atenolol could be recognized by the Chiralcel® OD column in less than 20 min. Symmetrical peaks were obtained; however, several protocols produced peaks with wide bases and slanted baselines. Observations showed that efficient enantioresolution of racemic atenolol was obtained at slow mobile phase flow rate, decreased concentration of amine‐type modifier but increased alcohol content in mobile phase and highest ultraviolet detection wavelength were required. The optimal ultra fast LC protocol enables to reduce and eliminate the peaks of either the atenolol solvent or the buffers and provided the highest peak intensities of both atenolol enantiomers. Chirality 24:356–367, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The use of displacement electrophoresis for the concentration of dilute protein solutions and the construction of a column suitable for this purpose are described. The concentrated protein zone can be pumped directly from the electrophoresis column into a gel-filtration column, which greatly reduces losses of protein. Recoveries of 95% or better were obtained even for small amounts of protein. The electrophoretically concentrated samples gave virtually the same elution profiles as did samples injected in a small volume without the use of electrophoretic preconcentration.  相似文献   

7.
Fermentation optimization experiments are ideally performed at small scale to reduce time, cost and resource requirements. Currently microwell plates (MWPs) are under investigation for this purpose as the format is ideally suited to automated high-throughput experimentation. In order to translate an optimized small-scale fermentation process to laboratory and pilot scale stirred-tank reactors (STRs) it is necessary to characterize key engineering parameters at both scales given the differences in geometry and the mechanisms of aeration and agitation. In this study oxygen mass transfer coefficients are determined in three MWP formats and in 7.5 L and 75 L STRs. k(L)a values were determined in cell-free media using the dynamic gassing-out technique over a range of agitation conditions. Previously optimized culture conditions at the MWP scale were then scaled up to the larger STR scales on the basis of matched k(L)a values. The accurate reproduction of MWP (3 mL) E. coli BL21 (DE3) culture kinetics at the two larger scales was shown in terms of cell growth, protein expression, and substrate utilization for k(L)a values that provided effective mixing and gas-liquid distribution at each scale. This work suggests that k(L)a provides a useful initial scale-up criterion for MWP culture conditions which enabled a 15,000-fold scale translation in this particular case. This work complements our earlier studies on the application of DoE techniques to MWP fermentation optimization and in so doing provides a generic framework for the generation of large quantities of soluble protein in a rapid and cost-effective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号