首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plakophilins are a subfamily of p120-related arm-repeat proteins that can be found in both desmosomes and the nucleus. Among the three known plakophilin members, plakophilin 1 has been linked to a genetic skin disorder and shown to play important roles in desmosome assembly and organization. However, little is known about the binding partners and functions of the most widely expressed member, plakophilin 2. To better understand the cellular functions of plakophilin 2, we have examined its protein interactions with other junctional molecules using co-immunoprecipitation and yeast two-hybrid assays. Here we show that plakophilin 2 can interact directly with several desmosomal components, including desmoplakin, plakoglobin, desmoglein 1 and 2, and desmocollin 1a and 2a. The head domain of plakophilin 2 is critical for most of these interactions and is sufficient to direct plakophilin 2 to cell borders. In addition, plakophilin 2 is less efficient than plakophilin 1 in localizing to the nucleus and enhancing the recruitment of excess desmoplakin to cell borders in transiently transfected COS cells. Furthermore, plakophilin 2 is able to associate with beta-catenin through its head domain, and the expression of plakophilin 2 in SW480 cells up-regulates the endogenous beta-catenin/T cell factor-signaling activity. This up-regulation by plakophilin 2 is abolished by ectopic expression of E-cadherin, suggesting that these proteins compete for the same pool of signaling active beta-catenin. Our results demonstrate that plakophilin 2 interacts with a broader repertoire of desmosomal components than plakophilin 1 and provide new insight into the possible roles of plakophilin 2 in regulating the signaling activity of beta-catenin.  相似文献   

2.
Using two monoclonal antibodies described in the preceding paper we determined by immunofluorescence microscopy the distribution of an integral membrane protein of the desmosomal domain, the major glycopolypeptide of Mr 165,000 (bovine muzzle epidermal desmosome band 3; desmoglein) in various normal tissues, tumors and cultured cell lines from several mammalian species. This protein was detected in dotted or streak-like arrays along cell boundary structures which were known to contain non-membrane-integrated desmosomal plaque proteins such as desmoplakins. This is true for epithelial, i.e. cytokeratin-expressing cell types, for the desmin-producing myocardiac and Purkinje fiber cells of the heart, and for certain vimentin-containing cells such as arachnoidal and meningiomal cells and dendritic follicular cells of lymph nodes. However, on the basis of both immunoblot and immunocytochemical reactions, the protein is absent from non-desmosomal adhering junctions, including those devoid of desmoplakin but containing another plaque protein, plakoglobin ("band 5 protein"). We have used these antibodies to localize their epitopes with respect to the cell membrane. By immunoelectron microscopy we found that both epitopes are located in the desmosomal plaques, and this was confirmed by microinjection of purified antibodies into living cultured cells which resulted in labelling of the plaques. From these findings, taken together with previous analyses and localizations of the carbohydrate moieties of this glycoprotein, we conclude that desmoglein is a transmembrane glycoprotein which projects into--and contributes to--the desmosomal plaque structure. This glycoprotein represents a general component of true desmosomes and it is coexpressed with obligatory desmosome-specific plaque proteins such as desmoplakin I. The potential value of this glycoprotein as a desmosomal and cell type marker in histology and tumor diagnosis is discussed.  相似文献   

3.
4.
Among sarcomeric muscles the cardiac muscle cells are unique by, inter alia, a systemic and extended cell-cell contact structure, the intercalated disk (ID), comprising frequent and closely spaced arrays of plaque-coated cell-cell adhering junctions (AJs). As some of these junctions may look somewhat like desmosomes and others like fasciae adhaerentes, the dogma has emerged in the literature that IDs contain - like epithelial cells - both kinds of AJs formed by - for the most - mutually exclusive molecular ensembles. This, however, is not the case. In comprehensive immunoelectron microscopic studies of mammalian (human, bovine, rat, mouse) and non-mammalian (chicken, amphibia, fishes) heart muscle tissues, we have localized major constituents of the desmosomal plaques of polar epithelia, desmoplakin, plakophilin-2 and plakoglobin, as well as the desmosomal cadherins, desmoglein Dsg2 and desmocollin Dsc2, in both kinds of ID AJs, independent of the specific morphological appearance. The desmosomal molecules are not restricted to the desmosome-like-looking junctions but can also be detected in junctions appearing similar to the zonula or fascia adhaerens structures. These AJs of cardiac ID are therefore subsumed under the collective term area composita. We discuss our results with respect to the importance of ID junction molecules for the formation, maintenance and function of the heart, particularly in relation to recent findings that deletions of - or mutations in - genes encoding such proteins can cause severe, sometimes lethal damages.  相似文献   

5.
The desmoglein-specific cytoplasmic region (DSCR) is a conserved region of unknown structure and function that uniquely defines the desmoglein family of cell adhesion molecules. It is the site of caspase cleavage during apoptosis, and its mutation is linked to cardiomyopathy. Here, we reveal that a 276-residue DSCR construct of human desmoglein 1 is intrinsically disordered and forms an interaction hub for desmosomal proteins. In solution, it contains 6.5% helical and 10.3% β-strand structure based on circular dichroism spectroscopy. A single monomeric state with a predominantly unfolded structure is found by size-exclusion chromatography and analytical ultracentrifugation. Thermal stability assays and nuclear magnetic resonance spectroscopy reveal a nonglobular structure under a range of solution conditions. However, the introduction of detergent micelles increases structure to 18% helical and 16% β-strand character, suggesting an inducible structure. The DSCR exhibits weak but specific interactions with plakoglobin, the plakin domain of desmoplakin, plakophilin 1, and the cytoplasmic domain of desmocollin 1. The desmoglein 1 membrane proximal region also interacts with all four DSCR ligands, strongly with plakoglobin and plakophilin and more weakly with desmoplakin and desmocollin 1. Thus, the DSCR is an intrinsically disordered functional domain with an inducible structure that, along with the membrane proximal region, forms a flexible scaffold for cytoplasmic assembly at the desmosome.  相似文献   

6.
Desmosomes are not formed in epithelial cell cultures growing in media with low (less than or equal to 0.1 mM) concentrations of Ca2+ (LCM) but appear rapidly upon shift to media of normal calcium concentrations (NCM). Previous authors using immunolocalization of desmoplakin, a marker protein for the desmosomal plaque, in LCM-grown cells have interpreted positively stained, dense, cytoplasmic aggregates on intermediate filaments (IF) bundles as preformed plaque units which upon NCM shift would move to the plasma membrane and contribute to desmosome formation. Studying various cell cultures, including primary mouse keratinocytes and human A-431 cells, we show that most, probably all, desmoplakin-positive aggregates in LCM-grown cells are associated with membranous structures, mostly vesicles, and also contain other desmosomal markers, including desmoglein, a transmembrane glycoprotein. We interpret such vesicles as residual desmosome-derived domains endocytosed upon cell dissociation. Only keratinocytes grown for long times (2-4 wk) in LCM are practically free from such vesicles. In addition, we demonstrate that certain cells such as A-431 cells, when passaged in LCM and in the absence of stable junctions, are able to continually assemble "half-desmosomes" on the plasma membrane which in turn can be endocytosed as plaque-bearing vesicles. We also show that in LCM the synthesis of several desmosomal proteins (desmoplakins I and II, plakoglobin, desmoglein, "band 6 protein") continues and that most of the plaque protein, desmoplakin, is diffusely spread over the cytoplasm, apparently in a soluble monodisperse form of approximately 9S. From our results we propose that the plaque proteins occur in small, discrete, diffusible entities in the cytoplasm, in concentrations that are relatively high in LCM and low in NCM, from which they assemble directly, i.e., without intermediate precursor aggregates on IFs in the cytoplasm, on certain plasma membrane domains in a Ca2+ dependent process.  相似文献   

7.
In the present study, we have examined how modulation of protein kinase C (PKC) activity affected desmosome organization in HeLa cells. Immunofluorescence and electron microscopy showed that PKC activation upon short exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a reduction of intercellular contacts, splitting of desmosomes and dislocation of desmosomal components from the cell periphery towards the cytoplasm. As determined by immunoblot analysis of Triton X-100-soluble and -insoluble pools of proteins, these morphological changes were not correlated with modifications in the extractability of both desmoglein and plakoglobin, but involved almost complete solubilization of the desmosomal plaque protein, desmoplakin. Immunoprecipitation experiments and immunoblotting with anti-phosphoserine, anti-phosphothreonine and anti-phosphotyrosine antibodies revealed that desmoplakin was mainly phosphorylated on serine and tyrosine residues in both treated and untreated cells. While phosphotyrosine content was not affected by PKC activation, phosphorylation on serine residues was increased by about two-fold. This enhanced serine phosphorylation coincided with the increase in the protein solubility, suggesting that phosphorylation of desmoplakin may be a mechanism by which PKC mediates desmosome disassembly. Consistent with the loss of PKC activity, we also showed that down-modulation of the kinase (in response to prolonged TPA treatment) or its specific inhibition (by GF109203X) had opposite effects and increased desmosome formation. Taken together, these results clearly demonstrate an important role for PKC in the regulation of desmosomal junctions in HeLa cells, and identify serine phosphorylation of desmoplakin as a crucial event in this pathway.  相似文献   

8.
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and β-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.Key words: desmosome, cell-cell adhesion, intercellular junction, tyrosine phosphorylation, pervanadate, desmoglein, plakoglobin  相似文献   

9.
We have established PCR assays for the genes coding for the major proteins of the desmosome type of cell junction, the desmosomal cadherins DGI (desmoglein) and DGII/III (desmocollins), and the plaque proteins DPI/II (desmoplakin) and DPIII (plakoglobin) and used them to test human-mouse and human-rat somatic cell hybrids with different contents of human chromosomes. From these data we were able to assign DGI to chromosome 18 (DSG), DGII/III to chromosome 9p (DSC), DPI/II to chromosome 6p21-ter(DSP), and DPIII to chromosome 7 (JUP).  相似文献   

10.
In the present study, we have examined how modulation of protein kinase C (PKC) activity affected desmosome organization in HeLa cells. Immunofluorescence and electron microscopy showed that PKC activation upon short exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a reduction of intercellular contacts, splitting of desmosomes and dislocation of desmosomal components from the cell periphery towards the cytoplasm. As determined by immunoblot analysis of Triton X-100-soluble and -insoluble pools of proteins, these morphological changes were not correlated with modifications in the extractability of both desmoglein and plakoglobin, but involved almost complete solubilization of the desmosomal plaque protein, desmoplakin. Immunoprecipitation experiments and immunoblotting with anti-phosphoserine, antiphosphothreonine and anti-phosphotyrosine antibodies revealed that desmoplakin was mainly phosphorylated on serine and tyrosine residues in both treated and untreated cells. While phosphotyrosine content was not affected by PKC activation, phosphorylation on serine residues was increased by about two-fold. This enhanced serine phosphorylation coincided with the increase in the protein solubility, suggesting that phosphorylation of desmoplakin may be a mechanism by which PKC mediates desmosome disassembly. Consistent with the loss of PKC activity, we also showed that down-modulation of the kinase (in response to prolonged TPA treatment) or its specific inhibition (by GF 109203X) had opposite effects and increased desmosome formation. Taken together, these results clearly demonstrate an important role for PKC in the regulation ofdesmosomal junctions in HeLa cells, and identify serine phosphorylation of desmoplakin as a crucial event in this pathway.  相似文献   

11.
Desmosomes are intercellular junctions responsible for strong cell-cell adhesion in epithelia and cardiac muscle. Numerous studies have shown that the other major type of epithelial cell adhesion, the adherens junction, is destabilized by src-induced tyrosine phosphorylation of two of its principal components, E-cadherin and β-catenin. Here we show that treatment of epithelial cells with the potent tyrosine phosphatase inhibitor sodium pervanadate causes tyrosine phosphorylation of the major desmosomal components desmoglein 2 and plakoglobin in both the non-ionic detergent soluble and insoluble cell fractions and, surprisingly, stabilizes desmosomal adhesion, inducing the hyper-adhesive form normally found in tissues and confluent cell sheets. Taken together with the few other studies on desmosomes these results suggest that the effects of tyrosine phosphorylation on desmosomal adhesion are complex.  相似文献   

12.
Endothelial cells separate the intra- and extravascular space and regulate transport processes between these compartments. Since intercellular junctions are required for these specific cell functions, the cell-cell contacts in the permanent cell line ECV304 were systematically analyzed and compared with human umbilical vein endothelial cells (HUVECs) in primary culture and with the epithelial Madin Darby Canine Kidney (MDCK) cell line. Filter-grown ECV304 cells generate a distinct electrical resistance and a permeability barrier between cell culture compartments. Electron microscopy of ECV304 cells revealed lateral membrane interdigitations, typically found in endothelial cells in vivo, with direct membrane contact sites, which prevented the diffusion of lanthanum. By immunoblot and immunofluorescence analysis, the expression and cellular localization of the tight junction and adherens-type junction proteins occludin, ZO-1, symplekin, beta-catenin, and plakoglobin were analyzed. ECV304 cells display further characteristics of endothelial cells, including the expresssion of thrombomodulin and of the vitronectin receptor CD51, as well as the secretion of plasminogen activator inhibitor 1 (PAI-1) and endothelin. However, ECV304 cells also express proteins characteristically found in epithelial cells, including E-cadherin and the desmosomal proteins desmoplakin, desmocollin, and desmoglein; occasionally desmosomal structures can be identified by electron microscopy. In conclusion, ECV304 cells express many endothelial markers and form specialized intercellular junctions that display some epithelial features. Thus this reportedly endothelial-derived permanent human cell line may be dedifferentiated toward an epithelial phenotype.  相似文献   

13.
Plakoglobin (gamma-catenin), a member of the armadillo family of proteins, is a constituent of the cytoplasmic plaque of desmosomes as well as of other adhering cell junctions, and is involved in anchorage of cytoskeletal filaments to specific cadherins. We have generated a null mutation of the plakoglobin gene in mice. Homozygous -/- mutant animals die between days 12-16 of embryogenesis due to defects in heart function. Often, heart ventricles burst and blood floods the pericard. This tissue instability correlates with the absence of desmosomes in heart, but not in epithelia organs. Instead, extended adherens junctions are formed in the heart, which contain desmosomal proteins, i.e., desmoplakin. Thus, plakoglobin is an essential component of myocardiac desmosomes and seems to play a crucial role in the sorting out of desmosomal and adherens junction components, and consequently in the architecture of intercalated discs and the stabilization of heart tissue.  相似文献   

14.
The carboxyterminal cytoplasmic portions (tails) of desmosomal cadherins of both the desmoglein (Dsg) and desmocollin type are integral components of the desmosomal plaque and are involved in desmosome assembly and the anchorage of intermediate-sized filaments. When additional Dsg tails were introduced by cDNA transfection into cultured human epithelial cells, in the form of chimeras with the aminoterminal membrane insertion domain of rat connexin32 (Co32), the resulting stably transfected cells showed a dominant-negative defect specific for desmosomal junctions: despite the continual presence of all desmosomal proteins, the endogenous desmosomes disappeared and the formation of Co32-Dsg chimeric gap junctions was inhibited. Using cell transfection in combination with immunoprecipitation techniques, we have examined a series of deletion mutants of the Dsg1 tail in Co32-Dsg chimeras. We show that upon removal of the last 262 amino acids the truncated Dsg tail still effects the binding of plakoglobin but not of detectable amounts of any catenin and induces the dominant-negative phenotype. However, further truncation or excision of the next 41 amino acids, which correspond to the highly conserved carboxyterminus of the C-domain in other cadherins, abolishes plakoglobin binding and allows desmosomes to reform. Therefore, we conclude that this short segment provides a plakoglobin-binding site and is important for plaque assembly and the specific anchorage of either actin filaments in adherens junctions or IFs in desmosomes.  相似文献   

15.
It is widely assumed that the coordinate assembly of desmosomal cadherins and plaque proteins into desmosome-typical plaque-coated membrane domains, capable of anchoring intermediate-sized filaments (IF), requires cell-to-cell contacts and a critical extracellular Ca2+ concentration. To test this hypothesis we studied several cell lines grown for years in media with less than 0.1 mM Ca2+ to steady-state low Ca2+ medium (LCM) conditions, particularly the human keratinocyte line HaCaT devoid of any junctional cell contact (HaCaT-L cells). Using immunolocalization and vesicle fractionation techniques, we found that the transmembrane glycoprotein, desmoglein (Dsg), colocalized with the plaque proteins, desmoplakin and plakoglobin. The sites of coassembly of desmosomal molecules in HaCaT-L cells as well as in HaCaT cells directly brought into LCM were identified as asymmetric plaque-coated plasma membrane domains (half-desmosomes) or as special plaque- associated cytoplasmic vesicles, most of which had formed endocytotically. The surface exposure of Dsg in these half-desmosomes was demonstrated by the binding, in vivo, of antibodies specific for an extracellular Dsg segment which also could cross-bridge them into symmetric quasi-desmosomes. Otherwise, these half-desmosomes were shown in LCM to be taken up endocytotically. Half-desmosomal assemblies were also seen in uncoupled cells in normal Ca2+ medium. We conclude that, in the absence of intercellular contacts, assembly of desmosomal proteins at the cell surface takes place, resulting in transient half- desmosomes which then, in LCM and without a stable partner connection to the adjacent cell, can be endocytotically resumed. This frustrated cycle of synthesis and assembly maintains an ensemble of molecules characteristic of epithelial differentiation and the potential to form desmosomes, even when the final junctional structure cannot be formed. We propose that these half-desmosomal structures are general cell structures of epithelial and other desmosome-forming cells.  相似文献   

16.
Epithelial cells contain complexes of cytokeratin filaments (tonofilaments) with specific domains of the plasma membrane that appear as symmetric junctions, i.e. desmosomes, or as asymmetric hemi-desmosomes. These regions of filament-membrane-attachment are characterized by 14 to 20 nm thick dense plaques (desmosomal plaque). In isolated desmosome-tonofilament complexes or other desmosomal fractions from various stratified squamous epithelia (e.g. bovine muzzle epidermis and tongue mucosa) desmosomal plaque structures are recognized and show a relatively high resistance to various extraction buffers and detergents. Such fractions enriched in desmosomal plaque material are also enriched in two prominent polypeptide bands of apparent molecular weights 250,000 (desmoplakin I) and 215,000 (desmoplakin II) which appear, on two-dimensional gel electrophoresis, as two distinct polypeptides isoelectric near neutral pH. These two polypeptides are present in almost equimolar amounts and each of them appears as a series of isoelectric variants, including some labeled by [32P]phosphate in tissue slices. The two desmoplakin polypeptides are closely related as shown by tryptic peptide map analysis and are different from keratin-like proteins and other major polypeptides of desmosome-rich fractions. Guinea pig antibodies raised against desmoplakins and specific for these proteins do not cross-react with other desmosomal antigen(s) or constituents of other types of junctions. Using desmoplakin antibodies we have identified desmoplakins as the major constituents of the desmosomal plaques present in epithelial and myocardiac cells of diverse species. The significance of this group of cell type-specific membrane-associated cytoskeletal proteins and their possible cytoskeletal functions are discussed.  相似文献   

17.
In the retina, special plaque-bearing adhering junctions are aligned to form a planar system (the "outer limiting zone," OLZ) of heterotypic connections between the photoreceptor cells and the surrounding glial cells ("Müller cells"), together with homotypic junctions. In the plaques of these junctions, which contain N-cadherin-and possibly also related cadherins-we have identified, by immunolocalization techniques, a recently discovered neural tissue-specific protein, neurojungin, a member of the plakoglobin/armadillo protein family. In these plaques we have also detected other adherens plaque proteins, such as alpha- and beta-catenin, protein p120, and vinculin, as well as proteins known as constituents of tight junction plaques, such as symplekin and protein ZO-1, and the desmosomal plaque protein plakophilin 2. This unusual combination of proteins and the demonstrated absence of plakoglobin define the OLZ junctions as a new and distinct category of adhering junction, which probably has special architectural functions.  相似文献   

18.
Plakophilin 1, a member of the armadillo multigene family, is a protein with dual localization in the nucleus and in desmosomes. To elucidate its role in desmosome assembly and regulation, we have analyzed its localization and binding partners in vivo. When overexpressed in HaCaT keratinocytes, plakophilin 1 localized to the nucleus and to desmosomes, and dramatically enhanced the recruitment of desmosomal proteins to the plasma membrane. This effect was mediated by plakophilin 1's head domain, which interacted with desmoglein 1, desmoplakin, and keratins in the yeast two-hybrid system. Overexpression of the armadillo repeat domain induced a striking dominant negative phenotype with the formation of filopodia and long cellular protrusions, where plakophilin 1 colocalized with actin filaments. This phenotype was strictly dependent on a conserved motif in the center of the armadillo repeat domain. Our results demonstrate that plakophilin 1 contains two functionally distinct domains: the head domain, which could play a role in organizing the desmosomal plaque in suprabasal cells, and the armadillo repeat domain, which might be involved in regulating the dynamics of the actin cytoskeleton.  相似文献   

19.
Adhering junctions are generally grouped into desmosomes and adherens junctions based on their ultrastructural appearance and molecular composition. The armadillo-protein plakoglobin is common to both types of junctions, which are otherwise composed of mutually exclusive proteins. This view is based on observations in epithelial tissues but cannot easily be transferred to other cell types and tissues, as has become apparent during the last decade with the identification of new junctional proteins and the investigation of further non-epithelial junctions. Using a broad array of well-characterized specific antibodies against key junctional proteins in immunoblot reactions, high-resolution double-label laser scanning confocal microscopy, and immunoelectron microscopy, we describe a new type of adherens junction in human meningiomas and the human meningioma cell line HBL-52. This novel junction has a unique composition of proteins not found in any other tissue; it contains the desmosomal armadillo-protein plakophilin 2 together with the classic proteins of “epithelial” adherens junctions, i.e., E-cadherin (in some instances replaced by N-cadherin), alpha-catenin, beta-catenin, plakoglobin, and p120ctn. Ultrastructurally, it is formed between two or three neighboring cells. For pragmatic reasons, we suggest the name “meningeal junction” for this new structure. All authors declare the absence of conflicts of interest.  相似文献   

20.
We have characterized the junctions between endothelial cells of diverse blood vessels at the light and electron microscopic level using various antibodies to plakoglobin (polypeptide Mr 83,000) and vinculin. Endothelial cells from fenestrated and non-fenestrated capillaries to large arteries are connected to each other by extended junctions that are coated on their cytoplasmic face by plaques of loosely matted filamentous material that form a continuous belt system along the cell circumference. These plaques are devoid of desmosome-specific proteins such as desmoplakin(s) and desmoglein, but contain plakoglobin. Immunofluorescence microscopic reactions of these regions with vinculin antibodies have also been observed, although they are much weaker and less consistent. This composition, together with their association with actin microfilaments, classifies this extended plaque system as Zonulae adhaerentes. Our results also show that such endothelia may be distinguished from truly epithelial cells by the absence of desmosomes and intermediate filaments of the cytokeratin type. The relationship of the various kinds of adhering junctions and the physiological importance of these junctions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号