共查询到20条相似文献,搜索用时 14 毫秒
1.
We studied the enzyme monoamine oxidase (MAO) in isolated cerebral microvessels, and in mitochondria-enriched brain and liver preparations from six mammalian species, including human. We also studied MAO distribution in various tissues and in discrete brain regions of the rat. MAO was assessed by measuring the specific binding of [3H]pargyline, an irreversible MAO inhibitor, and the rates of oxidation of known MAO substrates: benzylamine, tyramine, tryptamine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Molecular forms of MAO were examined by using specific MAO inhibitors, and by polyacrylamide gel electrophoresis after [3H]pargyline binding. In general, the liver from all species had higher MAO levels than the brain, with minor variation among species in their brain and liver MAO content. However, there were remarkable species differences in brain microvessel MAO, with rat microvessels having one of the highest MAO activity among all tissues, whereas MAO activities in brain microvessels from humans, mice, and guinea pigs were very low. In most rat tissues, including the brain, there was a preponderance of MAO-B over MAO-A. The only exceptions were the heart and skeletal muscle. Estimates of MAO half-life in rat brain microvessels, rat brain, and rat liver indicated that microvessel MAO had a higher turnover rate. The reasons underlying the remarkable enrichment of rat cerebral microvessels with MAO-B are unknown, but it is evident that there are marked species differences in brain capillary endothelium MAO activity. The biological significance of these findings vis a vis the role of MAO as a "biochemical blood-brain barrier" that protects the brain from circulating neurotoxins and biogenic amines should be investigated. 相似文献
2.
Sergey O. Sablin Matthew J. Krueger Sergey O. Bachurin† Lev S. Solyakov† Simon M. N. Efange‡ Thomas P. Singer 《Journal of neurochemistry》1994,62(5):2012-2016
Abstract: 1-Methyl-4-benzyl-1,2,3,6-tetrahydropyridine (MBzTP), an analogue of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, despite its rapid oxidation by monoamine oxidase B (MAOB), is not neurotoxic. The pyridinium expected to arise from the four-electron oxidation of MBzTP inhibits mitochondrial respiration and the oxidation of NADH in inner membranes and is only moderately less inhibitory than 1-methyl-4-phenylpyridinium. It is also a competitive inhibitor of dopamine uptake by the dopamine transporter and hence likely to be taken up into neurons, despite its relatively high K1 value (K1= 21 μM). Incubation of MBzTP with purified MAO B yields first the dihydropyridinium form, then a mixture of the pyridinium form and another unidentified product, in proportions that depend on the concentrations of MAO B and oxygen. At low MAO B concentration and moderate oxygen concentration, nonenzymatic formation, of the unidentified product predominates. The lack of neurotoxicity of MBzTP appears to be due to the oxidative destruction of the dihydropyridine and consequent failure of accumulation of 1-methyl-4-behzylpyridinium. 相似文献
3.
David C. Perry Linda J. Grimm Karen G. Kettler Kenneth J. Kellar 《Journal of neurochemistry》1988,51(5):1535-1540
Competition binding studies, subcellular distribution, and in vitro autoradiography were employed to compare the binding in rat brain of [3H]tryptamine with two radioligands for monoamine oxidase (MAO), [3H]pargyline, and [3H]1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine ([3H]MPTP). The MAO inhibitors pargyline, clorgyline, and deprenyl all yielded biphasic competition curves versus [3H]tryptamine. At low concentrations, these drugs stimulated binding by protecting the radioligand from MAO oxidation; at considerably higher concentrations, they inhibited binding by direct competition at the [3H]tryptamine binding site. In subcellular distribution studies, [3H]tryptamine was localized preferentially to the synaptosomal fraction, whereas [3H]pargyline showed greater binding to the mitochondrial fraction. Equilibrium binding studies revealed that the potencies of a series of seven compounds at inhibiting [3H]tryptamine binding were completely different from their potencies at inhibiting [3H]MPTP binding. Finally, the autoradiographic distribution of [3H]tryptamine binding in rat brain was different from that of [3H]MPTP and [3H]pargyline. We conclude that the [3H]tryptamine binding site in rat brain is not equivalent to MAO. 相似文献
4.
Studies on the Oxidation of the Dopaminergic Neurotoxin 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine by Monoamine Oxidase B 总被引:2,自引:5,他引:2
Richard E. Heikkila Lawrence Manzino Felicitas S. Cabbat Roger C. Duvoisin 《Journal of neurochemistry》1985,45(4):1049-1054
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is a chemical that, after injection into experimental animals, including mice and monkeys, causes a degeneration of the nigrostriatal pathway. We carried out experiments designed to study the in vitro oxidation of MPTP by mouse brain mitochondrial preparations. MPTP was actively oxidized by the mitochondrial preparations, with Km and Vmax values very similar to those of benzylamine, a typical substrate for MAO-B. MPTP was oxidized considerably better than many of its analogs, even those with relatively minor structural changes. Several monoamine oxidase inhibitors (MAOI) were potent inhibitors of MPTP oxidation, and there was a highly significant correlation between the capacity of the MAOI tested to inhibit MPTP oxidation and benzylamine oxidation. There was no correlation between the capacity of the MAOI to inhibit MPTP oxidation and their capacity to inhibit the oxidation of tryptamine, a substrate for MAO-A. In other experiments, MPTP was an excellent substrate for pure MAO-B, prepared from bovine liver. All of these data, combined with the fact that MAO-B inhibitors can protect against MPTP-induced dopaminergic neurotoxicity in vivo, point to an important role for MAO-B in MPTP metabolism in vivo. 相似文献
5.
A. R. Bhatti J. Burdon A. C. Williams H. S. Pall D. B. Ramsden 《Journal of neurochemistry》1988,50(4):1097-1104
Abstract: Seventeen analogues of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine were synthesized using three reaction pathways: condensation of phenols with 1-methyl-4-piperidone, reaction of Grignard reagents with 1-methyl-4-piperidone followed by dehydration of the product, and aminomethylation of olefins. The identity of the products of synthesis was established by nuclear magnetic resonance spectroscopy, mass spectroscopy. and elemental analysis. Thirteen analogues were shown to inhibit the oxidation of benzylamine by bovine plasma amine oxidase. Increasing the length of the aliphatic chain of N -substituted analogues resulted in increased inhibition. In 4-phenyl-substituted analogues, both the position and electronic character of the substituent group affected the degree of inhibition. 相似文献
6.
Evaluation of the Biological Activity of Several Analogs of the Dopaminergic Neurotoxin 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine 总被引:6,自引:5,他引:1
Stephen K. Youngster Patricia K. Somalia Richard E. Heikkila 《Journal of neurochemistry》1987,48(3):929-934
Several analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were synthesized and screened for their capacity to be oxidized by monoamine oxidase (MAO-A or MAO-B) and their capacity to produce nigrostriatal dopaminergic neurotoxicity in mice. All of the compounds were relatively weak substrates for MAO-A but many of the compounds were found to be good substrates for MAO-B. Only three of the compounds, in addition to MPTP itself, were found to be neurotoxic. These were 1-methyl-4-cyclohexyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine and 1-methyl-4-(3'-methoxyphenyl)-1,2,3,6-tetrahydropyridine. All three of these neurotoxic compounds were found to be substrates for MAO-B; in contrast no compound was found to be neurotoxic that was not oxidized by MAO-B. The capacity of the compounds studied to be oxidized by MAO-B appears to be an important aspect of the neurotoxic process. 相似文献
7.
Makio Mogi Minoru Harada Kohichi Kojima Kazutoshi Kiuchi Toshiharu Nagatsu 《Journal of neurochemistry》1988,50(4):1053-1056
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg subcutaneously per day for 8 days) to C57BL/6N mice were studied on tyrosine hydroxylase (TH), L-3,4-dihydroxyphenylalanine decarboxylase (DDC), and monoamine oxidase (MAO) activities in the striatum, and TH, DDC, dopamine-beta-hydroxylase (DBH), and MAO activities in the hypothalamus. Treatment with MPTP led to a large decrease in TH activity and a parallel decrease in DDC activity in the striatum, as compared with the saline controls. In contrast, MPTP administration did not cause a decrease of the activities of TH, DDC, and DBH in the hypothalamus. There was also no reduction in MAO activities of striatum and hypothalamus. These data indicate that MPTP administration to mice results in specific degeneration of the dopaminergic nigrostriatal pathway and that DDC in the mouse striatum may mainly be localized in the dopaminergic neurons with TH. 相似文献
8.
A. Bocchetta M. P. Piccardi M. Del Zompo S. Pintus G. U. Corsini 《Journal of neurochemistry》1985,45(3):673-676
A saturable, specific, high-affinity binding site for [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was found in rat brain homogenates. The CNS regional distribution, the subcellular fractionation, and the displacement by pargyline, clorgyline, and deprenyl suggest that this binding site may correspond to monoamine oxidase. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibited the oxidative deamination of dopamine, both in vivo and in vitro. Striatal levels of 3,4-dihydroxyphenylacetic acid were significantly reduced shortly after intravenous administration, and returned to normal values after a few hours. The in vitro formation of 3,4-dihydroxyphenylacetic acid from dopamine was inhibited by concentrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine comparable to those of pargyline. 相似文献
9.
Naji J. Riachi Pramod K. Arora Lawrence M. Sayre Sami I. Harik 《Journal of neurochemistry》1988,50(4):1319-1321
We synthesized a number of fluorinated analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and tested their suitability as substrates for monoamine oxidase B in vitro and their dopaminergic neurotoxicity in vivo. Two of the compounds tested, 2'-F-MPTP and 2'-CF3-MPTP, were better enzyme substrates and possessed more potent neurotoxicity for nigrostriatal dopamine neurons than MPTP, especially 2'-F-MPTP. The results of the in vivo neurotoxicity experiments correlated well with the suitability of the compounds as substrates for monoamine oxidase. These findings could serve as a basis for the use of 18F-labeled analogs of MPTP for positron emission tomography studies of nonhuman primates for better understanding of the factors underlying MPTP toxicity. Furthermore, the discovery of two MPTP analogs with enhanced selective neurotoxicity to dopaminergic neurons may be an important clue in the continuing efforts to define the chemical structure-activity factors governing MPTP neurotoxic activation mechanisms. 相似文献
10.
J. Willoughby R. F. Cowburn J. A. Hardy Vivette Glover M. Sandler 《Journal of neurochemistry》1989,52(2):627-631
1-Methyl-4-phenylpyridinium (MPP+) was taken up into human and rat striatal synaptosomes by a saturable system, similar to that for dopamine, with Km values of 0.24 and 0.17 microM, respectively, and similar Vmax values. Uptake of MPP+ and dopamine into both rat and human synaptosomes was inhibited by cocaine and amfonelic acid, with the latter being five to 10 times more potent than the former. MPP+ uptake was potently inhibited by dopamine in preparations from both species. In general, the characteristics of human and rat synaptosomal MPP+ uptake were very similar It seems unlikely that species differences in toxicity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or reaction to dopamine uptake blockers stem from this system. 相似文献
11.
Potentiation by the Tetraphenylboron Anion of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine and Its Pyridinium Metabolite 总被引:1,自引:1,他引:1
Richard E. Heikkila John Hwang Senyo Ofori Herbert M. Geller William J. Nicklas 《Journal of neurochemistry》1990,54(3):743-750
The 1-methyl-4-phenylpyridinium species (MPP+) is the four-electron oxidation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is widely assumed to be the actual neurotoxic species responsible for the MPTP-induced destruction of dopaminergic neurons. MPTP is oxidized by the enzyme monoamine oxidase-B to a dihydropyridinium intermediate which is oxidized further to MPP+, an effective inhibitor of the oxidation of the Complex I substrates glutamate/malate in isolated mitochondrial preparations. In the present study, the tetraphenylboron anion (TPB) greatly potentiated the inhibitory effects of MPP+ and other selected pyridinium species on glutamate/malate respiration in isolated mouse liver mitochondria. At 10 microM TPB, the potentiation ranged from approximately 50-fold to greater than 1,000-fold for the several pyridinium species tested. In other experiments, TPB greatly enhanced the accumulation of [3H]MPP+ by isolated mitochondrial preparations. This facilitation by TPB of MPP+ accumulation into mitochondria explains, at least in part, the potentiation by TPB of the above-mentioned inhibition of mitochondrial respiration. Moreover, TPB addition increased the amount of lactate formed during the incubation of mouse neostriatal tissue slices with MPTP and other tetrahydropyridines. The administration of TPB also potentiated the dopaminergic neurotoxicity of MPTP in male Swiss-Webster mice. All of these observations, taken together, are consistent with the premise that the inhibitory effect of MPP+ on mitochondrial respiration within dopaminergic neurons is the ultimate mechanism to explain MPTP-induced neurotoxicity. 相似文献
12.
Differential Regulation of Neuronal Nicotinic Receptor Binding Sites Following Chronic Nicotine Administration 总被引:8,自引:4,他引:8
Christopher M. Flores †Martha I. Dávila-García Yvonne M. Ulrich †Kenneth J. Kellar 《Journal of neurochemistry》1997,69(5):2216-2219
Abstract: The deleterious effect of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic neurons of the substantia nigra is well established. In addition, increased glutamatergic drive to basal ganglia output nuclei is considered a likely contributor to the pathogenesis of Parkinson's disease. One possibility for the increased excitatory tone may be related to an impairment in glutamate uptake. As astrocytes possess efficient transport mechanisms for both MPTP and glutamate, we have examined the effect of this agent on d -aspartate uptake into these cells. Treatment of cultures with 50 µ M MPTP for 24 h decreased uptake by 39%. Kinetic analysis revealed that this effect was due to a 35% decrease in V max with no change in the K m . Treatment with deprenyl, a monoamine oxidase B inhibitor, produced a complete reversal of MPTP-induced uptake inhibition, but was ineffective following exposure of cells to the MPTP metabolite, 1-methyl-4-phenylpyridinium (MPP+ ). Removal of MPTP from cultures resulted in a complete restoration of glutamate uptake after 24 h. These results show that MPTP reversibly compromises glutamate uptake in cultured astrocytes, which is dependent on the conversion of MPTP to MPP+ . Such findings suggest that the glutamate transporter in astrocytes plays an important role in MPTP-induced neurotoxicity and possibly in parkinsonism. 相似文献
13.
Juan R. Sanchez-Ramos Patrick Michel William J. Weiner Franz Hefti 《Journal of neurochemistry》1988,50(6):1934-1944
Dopaminergic neurons in cultures of dissociated cells from fetal rat mesencephalon were exposed to the principal metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenyl-pyridinium ion (MPP+), and several of its structural analogues. At concentrations between 0.01 and 0.1 microM, MPP+ inhibited catecholamine accumulation as visualized by cytofluorescence. Between 0.1 and 10.0 microM, MPP+ resulted in disappearance of tyrosine hydroxylase immunoreactivity without affecting other cells in the cultures. At concentrations higher than 10 microM, MPP+ was toxic to all cells present in the cultures. The effect of low concentrations of MPP+ on catecholamine cytofluorescence of the dopaminergic neurons was partially reversible. The intermediate concentrations produced irreversible structural changes of tyrosine hydroxylase-positive cells, resulting in complete disappearance of these neurons. The morphological changes were specific to the dopaminergic neurons and were not evident in other cells viewed with phase contrast microscopy. Of the structural analogues tested, the 1-ethyl analogue of MPP+ was effective in selectively destroying dopaminergic neurons in our culture system. The antioxidants L-acetyl-carnitine, beta-carotene, and alpha-tocopherol failed to protect against MPP+ neurotoxicity when co-incubated with the toxin. 相似文献
14.
15.
Mitochondrial and cytosolic monoamine oxidases were purified 220- and 129-fold, respectively, from rat brain. The purification procedure involved extraction (without the use of detergents for mitochondrial monoamine oxidase), ammonium sulfate precipitation, and chromatography on Sephadex G-25 and a DEAE-cellulose column. The properties of both enzymes with kynuramine as substrate, including Km values and pH optima at different kynuramine concentrations; the Rf values on polyacrylamide gel electrophoresis; and the thermal inactivation patterns were different. 2-Mercaptoethanol, together with heat treatment, released the flavin and decreased the enzyme activity differentially for the two enzymes. The absorption spectrum showed a "Red shift" in the absorption maxima when the spectra of the non-Triton-treated purified preparations were compared with those of the Triton-treated ones, thus possibly revealing that the mitochondrial and the cytosolic monoamine oxidases may be two different enzyme entities. 相似文献
16.
Mark Guttman Hans C. Fibiger Alexander Jakubovic Donald B. Calne 《Journal of neurochemistry》1990,54(4):1329-1334
Cynomolgus monkeys received intracarotid injections of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to produce a chronic unilateral model of parkinsonism. Extensive dopamine (DA) depletion was observed in the caudate nucleus and putamen on the side ipsilateral to the injection and this was associated with contralateral tremor, rigidity, and bradykinesia. A dose of 1.25 mg of MPTP caused ipsilateral DA loss of 99.4% in the caudate nucleus, 99.8% in the putamen, and 74.2% in the nucleus accumbens. A dose of 2.5 mg caused ipsilateral DA depletion of 99.3% in the caudate nucleus, 99.5% in putamen, and 90.1% in the nucleus accumbens. The unilateral aspect of the lesion was dose sensitive, with the 2.5-mg dose causing bilateral asymmetric DA depletion. Tissue concentrations of serotonin were not affected by the toxin. These findings confirm that intracarotid injection of MPTP may produce a useful primate model of hemiparkinsonism that can be associated with selective unilateral DA depletion when the appropriate dose of toxin is used. 相似文献
17.
Ben A. Bahr Vitaly Vodyanoy Randy A. Hall Vishnu Suppiramaniam Markus Kessler Katumi Sumikawa Gary Lynch 《Journal of neurochemistry》1992,59(5):1979-1982
Glutamate receptors belonging to the subclass specifically activated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) were solubilized from rat forebrain membranes with Triton X-100 and partially purified through a series of three chromatographic steps. Specific [3H]AMPA binding increased 30-60-fold during the isolation procedure. A protein band recognized by antibodies against specific amino acid sequences of the glutamate receptor-A subunit was enriched with each purification step; the molecular mass of this band (105 kDa) corresponded to that of cloned AMPA receptor subunits. Photoaffinity labeling of forebrain membranes with 6-cyano-7-[3H]nitroquinoxaline-2,3-dione, a specific antagonist of the AMPA receptor, labeled a single band that comigrated with the immunolabeled protein. On reconstitution of the partially purified material into bilayer patches, single-channel current fluctuations were elicited by 300 nM AMPA and blocked by 1 microM 6,7-dinitroquinoxaline-2,3-dione. 相似文献
18.
Maria Tomaszewicz Luigi G. Micossi Hanna Bielarczyk Danuta Luszawska† Ivano Santarelli rzej Szutowicz 《Journal of neurochemistry》1991,56(3):729-732
Intracerebroventricular injections of angiotensin II caused 108, 62, and 54% increases in monoamine oxidase A activities in rat hippocampus, hypothalamus, and striatum, respectively. These activatory effects were abolished by simultaneous injections of eledoisin. No significant changes of monoamine oxidase B activities were found under the same experimental conditions. Neither angiotensin II nor elodoisin changed substrate/inhibitor affinities of both isoenzymes. These data indicate that angiotensin II and tachykinin transmitter systems may exert opposite, long-term regulatory effects on monoaminergic neurons in rat brain. 相似文献
19.
Krishnan Sriram Karnire S. Pai Vijayalakshmi Ravindranath 《Journal of neurochemistry》1995,64(3):1203-1208
Abstract: Earlier studies from our laboratory have demonstrated that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity could be modulated by inhibitors and inducer of cytochrome P450 (P450) in an in vitro model consisting of sagittal slices of mouse brain. To understand the molecular mechanisms underlying the role of P450 on MPTP toxicity, it was undertaken to study the effect of the modulators of P450 on the toxicity of the metabolite of MPTP, namely, 1-methyl-4-phenylpyridinium ion (MPP+ ). Incubation of mouse brain slices with various concentrations of MPP+ (1–100 µ M ) resulted in dose-dependent inhibition of mitochondrial enzyme NADH-dehydrogenase (NADH-DH) and leakage of the cytosolic enzyme lactate dehydrogenase from the slice into the medium. MPP+ -induced toxicity was abolished by pretreatment of the slices with inhibitors of monoamine oxidase (MAO; pargyline and deprenyl) or inhibitors of P450 (piperonyl butoxide or SKF-525A) or dopamine uptake blocker (GBR-12909), as measured by the activity of NADH-DH in slices and leakage of lactate dehydrogenase from the slice into the medium. Slices prepared from mice pretreated with phenobarbital (an inducer of P450) potentiated the toxic effects of MPP+ . Pretreatment of slices with MAO-inhibitor, P450 inhibitors, or dopamine uptake blocker attenuated the uptake of MPP+ into the slices. In contrast, MPP+ uptake was significantly increased in slices prepared from phenobarbital-pretreated mice. Thus, both MAO and P450 inhibitors abolish the toxicity of MPP+ in the sagittal slices of mouse brain by altering the uptake of the toxin into the slices. 相似文献
20.
Transport of Lead-203 at the Blood-Brain Barrier During Short Cerebrovascular Perfusion with Saline in the Rat 总被引:2,自引:2,他引:2
Lead transport at the blood-brain barrier has been studied by short (less than 1.5 min) vascular perfusion of one cerebral hemisphere of the rat with a buffered physiological salt solution at pH 7.4 without calcium, magnesium, or bicarbonate and containing 203 Pb-labelled lead chloride. In the absence of complexing agents, 203Pb uptake was rapid, giving a space of 9.7 ml/100 g of wet frontal cortex at 1 min. Lead-203 influx was linear with lead concentration up to 4 microM. Five percent albumin, 200 microM cysteine, or 1 mM EDTA almost abolished 203Pb uptake. Lead-203 entry into brain was uninfluenced by varying the calcium concentration or by magnesium or the calcium blocker methoxyverapamil. Similarly, 1 mM bicarbonate or 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid was without effect. Increasing the potassium concentration reduced 203Pb uptake. Vanadate at 2 mM, 2 microM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a metabolic uncoupler), or 2 microM stannic chloride all markedly enhanced lead entry into brain, as did a more alkaline pH (7.80). In conclusion, there is a mechanism allowing rapid passive transport of 203Pb at the brain endothelium, perhaps as PbOH+. Lead uptake into brain via this system is probably made less important by active transport of lead back into the capillary lumen by the calcium-ATP-dependent pump. 相似文献