首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.  相似文献   

2.
R Timkovich  M S Cork  P V Taylor 《Biochemistry》1984,23(15):3526-3533
The 1H NMR spectra of ferri- and ferro-cytochrome c-550 from Paracoccus denitrificans (ATCC 13543) have been investigated at 300 MHz. The ferri-cytochrome c-550 shows hyperfine-shifted heme methyl resonances at 29.90, 29.10, 16.70, and 12.95 ppm and a ligand methionyl methyl resonance at -15.80 ppm (pH 8 and 23 degrees C). Four pH-linked structural transitions were detected in spectra taken as a function of pH. The transitions have been interpreted as loss of the histidine heme ligand (pK less than or equal to 3), ionization of a buried heme propionate (pK = 6.3 +/- 0.2), displacement of the methionine heme ligand by a lysyl amino group (pK congruent to 10.5), and loss of the lysyl ligand (pK greater than or equal to 11.3). The temperature behavior of hyperfine-shifted resonances was determined. Two heme methyl resonances (at 16.70 and 12.95 ppm) showed downfield hyperfine shifts with increasing temperature. The cyanoferricytochrome had methyl resonances at 23.3, 20.1, and 19.4 ppm. NMR spectroscopy did not detect the formation of a complex with azide. The second-order rate constant for electron transfer between ferric and ferrous forms was determined to be 1.6 X 10(4) M-1 s-1. Heme proton resonances were assigned in both oxidation states by cross-saturation and nuclear Overhauser enhancement experiments. Spin-coupling patterns in the aromatic region of the ferro-cytochrome spectrum were investigated.  相似文献   

3.
The pH and temperature dependences of the 270-MHz proton nuclear magnetic resonance and resonance Raman spectra of Thermus thermophilus cytochrome c-552 were studied. Observation of the NMR methyl signal of the iron-bound methionine indicates that a methionine residue is the sixth ligand of heme iron in both ferric and ferrous states, although the environment of this methionine is not similar to that in mitochondrial cytochrome c. The NMR methyl signal of the coordinated methionine in the ferrous state was observed even at 87 degrees C, indicating the retention of the methionine ligand at the sixth coordination position. None of resonance Raman lines in ferrous cytochrome c-552 at higher temperatures showed a prominant temperature-dependent frequency shift, which implies that the heme iron was still bound with strong ligands and retained the low-spin state. In either redox state overall thermal denaturation did not occur even at 87 degrees C, although the ferric form existed in thermal spin mixture of the low-spin and high-spin species at higher temperatures. The hyperfine-shifted NMR resonances of the ferric form indicated rapid exchange of the sixth ligand at alkaline pH in the process of a single-step alkaline isomerization.  相似文献   

4.
Electron paramagnetic resonance (EPR) and optical spectra are used as probes of the heme and its ligands in ferric and ferrous leghemoglobin. The proximal ligand to the heme iron atom of ferric soybean leghemoglobin is identified as imidazole by comparison of the EPR of leghemoglobin hydroxide, azide, and cyanide with the corresponding derivatives of human hemoglobin. Optical spectra show that ferric soybean leghemoglobin near room temperature is almost entirely in the high spin state. At 77 K the optical spectrum is that of a low spin compound, while at 1.6 K the EPR is that of a low spin form resembling bis-imidazole heme. Acetate binds to ferric leghemoglobin to form a high spin complex as judged from the optical spectrum. The EPR of this complex is that of high spin ferric heme in a nearly axial environment. The complexes of ferrous leghemoglobin with substituted pyridines exhibit optical absorption maxima near 685 nm, whose absorption maxima and extinctions are strongly dependent on the nature of the substitutents of the pyridine ring; electron withdrawing groups on the pyridine ring shift the absorption maxima to lower energy. A crystal field analysis of the EPR of nicotinate derivatives of ferric leghemoblobin demonstrates that the pyridine nitrogen is also bound to the heme iron in the ferric state. These findings lead us to picture leghemoglobin as a somewhat flexible molecule in which the transition region between the E and F helices may act as a hinge, opening a small amount at higher temperature to a stable configuration in which the protein is high spin and can accommodate exogenous ligand molecules and closing at low temperature to a second stable configuration in which the protein is low spin and in which close approach of the E helix permits the distal histidine to become the principal sixth ligand.  相似文献   

5.
Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination bond in the native conformation was ruptured. When the pH was raised to pH 7.5, the acid form refolded to the native conformation through a distinctive intermediate. Formations of similar acid and intermediate forms were also observed for ferrous P450(cam). Both the ferric and ferrous forms of the intermediate were found to have an unidentified axial ligand of the heme at the 6th coordination sphere, which is vacant in the high spin ferric and ferrous forms at the native conformation. For the ferrous form, it was also indicated that the 5th axial ligand is different from the native cysteinate. The folding intermediates identified in this study demonstrate occurrences of non-native coordination state of heme during the refolding processes of the large b-type heme protein, being akin to the well known folding intermediates of cytochromes c, in which c-type heme is covalently attached to a smaller protein.  相似文献   

6.
R Timkovich  M S Cork 《Biochemistry》1984,23(5):851-860
Cytochrome c-554 from the bacterium Alcaligenes faecalis (ATCC 8750) is a respiratory electron-transport protein homologous to other members of the cytochrome c family. Its structure has been studied by 1H NMR spectroscopy in both the ferric and ferrous states. The ferric spectrum is characterized by downfield hyperfine-shifted heme methyl resonances at 46.25, 43.60, 38.40, and 36.73 ppm (25 degrees C, pH 7.1). Chemical shifts of these resonances change with temperature opposite to expectations derived from Curie's law. The pH behavior of the hyperfine-shifted resonances titrates with a pK of 6.3 that has been interpreted as due to ionization of a heme propionate. In the ferrous state, heme methyl, meso, and thioether bridge resonances have been observed and assigned. All aromatic proteins have been assigned according to the side chain of origin, and the structural environment about the sole tryptophan residue has been examined. The electron-transfer rate between ferric and ferrous forms has been estimated to be on the order of 3 X 10(8) M-1 s-1, which is the largest such self-exchange rate yet observed for a cytochrome.  相似文献   

7.
The coordination and spin-state of the Corynebacterium diphtheriae heme oxygenase (Hmu O) and the proximal Hmu O H20A mutant have been characterized by UV-visible and resonance Raman (RR) spectrophotometry. At neutral pH the ferric heme-Hmu O complex is a mixture of six-coordinate high spin and six-coordinate low spin species. Changes in the UV-visible and high frequency RR spectra are observed as a function of pH and temperature, with the six-coordinate high spin species being converted to six-coordinate low spin. The low frequency region of the ferrous RR spectrum identified the proximal ligand to the heme as a neutral imidazole with a Fe-His stretching mode at 222 cm(-1). The RR characterization of the heme-CO complex in wt-Hmu O confirms that the proximal imidazole is neither ionized or strongly hydrogen-bonded. Based on sequence identity with the mammalian enzymes the proximal ligand in HO-1 (His-25) and HO-2 (His-45) is conserved (His-20) in the bacterial enzyme. Site-specific mutagenesis identified His-20 as the proximal mutant based on electronic and resonance Raman spectrophotometric analysis. Titration of the heme-Hmu O complex with imidazole restored full catalytic activity to the enzyme, and the coordination of imidazole to the heme was confirmed by RR. However, in the absence of imidazole, the H20A Hmu O mutant was found to catalyze the initial alpha-meso-hydroxylation of the heme. The product of the aerobic reaction was determined to be ferrous verdoheme. Hydrolytic conversion of the verdoheme product to biliverdin concluded that oxidative cleavage of the porphyrin macrocycle was specific for the alpha-meso-carbon. The present data show that, in marked contrast to the human HO-1, the proximal ligand is not essential for the initial alpha-meso-hydroxylation of heme in the C. diphtheriae heme oxygenase-catalyzed reaction.  相似文献   

8.
The heme vicinities of the acid and alkaline forms of native (Fd(III)) horseradish peroxidase were investigated in terms of the magnetic circular dichroism (MCD) spectroscopy. The MCD spectrum of the acid form of native horseradish peroxidase was characteristic of a ferric high spin heme group. The resemblance in the MCD spectrum between the acid form and acetato-iron (III)protoporphyrin IX dimethyl ester suggests that the heme iron of the acid form has the electronic structure similar to that in a pentocoordinated heme complex. The MCD spectra of native horseradish peroxidase did not shown any substantial pH dependence in the pH range from 5.20 to 9.00. The MCD spectral change indicated the pK value for the equilibrium between the acid and alkaline forms to be 11.0 which agrees with the results from other methods. The alkaline form of native horseradish peroxidase at pH 12.01 exhibited the MCD spectrum of a low spin complex. The near infrared MCD spectrum suggests that the alkaline form of native horseradish peroxidase has a 6th ligand somehow different from a normal nitrogen ligand such as histidine or lysine. It implicates that the alkaline form has an overall ligand field strength of between the low spin component of metmyoglobin hydroxide and metmyoglobin azide.  相似文献   

9.
The pH dependence of resonance Raman spectra were studied for ferrous and ferric cytochromes c, c2, c3, c-551, and c-555. The frequencies of the 1565 cm-1 (ferric) and 1539 cm-1 lines (ferrous) were sensitive to the replacement of the sixth ligand. The titration curve for the 1565 cm-1 line of cytochrome c was parallel with that for the 695 nm band. The pH dependence of the 1539 cm-1 line of ferrous cytochrome c3 suggested the stepwise replacement of the sixth ligand of its four hemes, although such pH dependence was not recognized for the Raman spectra of other ferrous cytochromes investigated. The relative intensities of three Raman lines at 1639, 1587, and 1561 cm-1 of ferric protoporphyrin bis-imidazole complex were changed clearly by the presence of detergents. The relative intensities of the corresponding three Raman lines of cytochromes b5 and c were close to those of the ferric porphyrin complex in the presence and absence of detergents, respectively, suggesting an appreciable difference in their heme environments. Reduced hemin in detergent solution, unexpectedly, gave the Raman spectrum of ferric low spin type.  相似文献   

10.
Resonance Raman scattering studies are reported on freshly prepared and aged ferric, ligand-free ferrous, and CO-bound ferrous cytochrome c peroxidase. The ferric form of the fresh enzyme has a heme which is penta-coordinate high spin, independent of buffer over the pH range 4.3-7, as determined by well established Raman marker lines. The aged enzyme displays a mixture of spin and coordination states, but it can be stabilized in the penta-coordinate high spin form in the presence of phosphate. These results can be accounted for by considering the size of the channel (6 A wide, 11 A long) between the distal side of the heme and the outer surface of the protein. A phosphate ion may be accommodated in this channel resulting in the stabilization of the distal heme pocket. The ferrous cytochrome c peroxidase in both the ligand-free and CO-bound states has an acidic and an alkaline form. The acidic form has the characteristic spectral features of peroxidases: a high frequency iron-histidine stretching mode (248 cm-1), a high frequency Fe-CO stretching mode (537 cm-1), and a low frequency C-O stretching mode (1922 cm-1). At alkaline pH these frequencies become similar to those of hemoglobin and myoglobin, with the corresponding modes located at 227, 510, and 1948 cm-1, respectively. We attribute the acid/alkaline transition in the ferrous forms of cytochrome c peroxidase to a rearrangement mainly of the proximal side of the heme, culminating in a change of steric interactions between the proximal histidine and the heme or of the hydrogen bonding network involving the proximal histidine. The new data presented here reconcile many inconsistencies reported in the past.  相似文献   

11.
R Timkovich  M R Vavra 《Biochemistry》1985,24(19):5189-5196
The 1H NMR spectra of ferrous sulfmyoglobin, metsulfmyoglobin, and ferric cyanosulfmyoglobin were obtained at 300 MHz. Hyperfine-shifted resonances are observed in the case of metsulfmyoglobin and ferric cyanosulfmyoglobin that have line widths and cover a chemical shift range that are comparable to the corresponding forms of normal myoglobin. Two methyl resonances are observed in the spectrum of ferric cyanosulfmyoglobin at 44.19 and 25.48 ppm (25 degrees C, pH 8.3) that have been assigned to heme methyls at the 8- and 5-positions on the basis of pH titration effects homologous to the corresponding methyl resonances in ferric cyanomyoglobin. Examination of aromatic region resonances and the pH titration profiles of histidine resonances lead to the conclusion that the overall conformation of sulfmyoglobin was highly homologous to that of normal myoglobin and afforded assignments of histidine residues of the former. The most likely position for the addition of a sulfur atom to the heme of sulfmyoglobin is pyrrole ring A, with ring B a possible, but less likely, alternative.  相似文献   

12.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

13.
Electronic absorption and electron paramagnetic resonance (EPR) spectroscopic examinations revealed that a freshly prepared cytochrome c peroxidase (CCP) contains a penta-coordinated high spin ferric protoheme group. The penta-coordinated high spin state of fresh CCP is maintained in a remarkably wide range of pH (4-8). The freezing of fresh CCP induces the reversible coordination of an internal strong field ligand to the heme iron to form a hexa-coordinated low spin compound, which shows EPR extrema at gx = 2.70, gy = 2.20 and gz = 1.78. In the presence of glycerol the freezing-induced artifacts are eliminated and the fresh enzyme exhibits an EPR spectrum of rhombically distorted axial symmetry with EPR extrema at gx = 6.4, gy = 5.3, and gz = 1.97 at 10 K, characteristic of the penta-coordinated high spin enzyme. Upon aging CCP is converted to a hexa-coordinated high spin state due to the coordination of an internal weak field ligand to the heme iron. This conversion is accelerated at acidic pH values, and its reversibility varies from fully reversible to irreversible depending on the degree of enzyme aging. The aging-induced hexa-coordinated CCP is unreactive with hydrogen peroxide and exhibits an EPR spectrum of purely axial symmetry with extrema at g = 6 and g = 2 and an electronic absorption spectrum with an intensified Soret band at 408 nm (epsilon 408 nm = 120 mM-1 cm-1) and a blue-shifted charge-transfer band at 620 nm. Spectroscopic properties of different coordination and spin states of fresh and aged CCPs are compiled in order to formulate a generalized spectroscopic characterization of penta- and hexa-coordinated high spin ferric hemoproteins.  相似文献   

14.
The endogenous cation in peroxidases may contribute to the type of heme coordination. Here a series of ferric and ferrous derivatives of wild-type Leishmania major peroxidase (LmP) and of engineered K(+) site mutants of LmP, lacking potassium cation binding site, has been examined by electronic absorption spectroscopy at 25°C. Using UV-visible spectrophotometry, we show that the removal of K(+) binding site causes substantial changes in spin states of both the ferric and ferrous forms. The spectral changes are interpreted to be, most likely, due to the formation of a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH 7.0. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I were not observed in the K(+) site double mutants in the presence of H(2)O(2). Similarly electron donor oxidation rate was two orders less for the K(+) site double mutants compared to the wild type. These data show that K(+) functions in preserving the protein structure in the heme surroundings as well as the spin state of the heme iron, in favor of the enzymatically active form of LmP.  相似文献   

15.
A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination. The midpoint redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax approximately 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax approximately 3.5 converts mainly to a signal at g approximately 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.  相似文献   

16.
Axial coordination of ferric Aplysia myoglobin   总被引:3,自引:0,他引:3  
Resonance Raman spectra of ferric Aplysia myoglobin in the ligand-free and the azide-bound forms have been studied over a wide pH range to determine the coordination states of the heme iron atom. In the hydroxide form at high pH (approximately 9) the iron is six-coordinate and is in a high/low spin equilibrium. As the pH is lowered below the acid/alkaline transition (pKa = 7.5), the heme becomes five-coordinate. When the pH is lowered even further no other changes in the resonance Raman spectrum are detected; thus, the heme remains five-coordinate down to pH 4, the lowest value studied. For ferric azide-bound Aplysia myoglobin, the iron is six-coordinate in a high/low spin equilibrium at all pH values (4.8-9). These data indicate (i) that the unusual reactivity toward azide previously observed at neutral pH is indeed related to the absence of a coordinated water molecule, and (ii) that causes other than the heme coordination are responsible for the spectral differences and the ligand-binding kinetics differences observed below pH 6.  相似文献   

17.
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed.  相似文献   

18.
Gene inactivation studies point to the involvement of OxyC in catalyzing the last oxidative phenol coupling reaction during glycopeptide antibiotic biosynthesis. Presently, the substrate and exact timing of the OxyC reaction are unknown. The substrate might be the bicyclic heptapeptide or a thioester derivative bound to a protein carrier domain. OxyC from the vancomycin producer Amycolatopsis orientalis was produced in Escherichia coli and crystallized, and its structure was determined to 1.9 A resolution. OxyC gave UV-visible spectra characteristic of a P450-like hemoprotein in the low spin ferric state. After reduction to the ferrous state by dithionite the CO-ligated form gave a 450-nm peak in a UV-difference spectrum. The addition of vancomycin aglycone to OxyC produced type I changes to the UV spectrum. OxyC exhibits the typical P450-fold, with the Cys ligand loop containing the signature sequence FGHGX-HXCLG and Cys-356 being the proximal axial thiolate ligand of the heme iron. The observation of a water molecule bound to the heme iron is consistent with the UV-visible spectra of OxyC indicating a low spin heme. A polyethylene glycol molecule occupying the active site might mimic the bicyclic heptapeptide substrate. Analysis of the structure of Oxy-proteins and other P450s indicates regions that might be involved in binding of the redox partner and possibly the protein carrier domain.  相似文献   

19.
G S Lukat  K R Rodgers  H M Goff 《Biochemistry》1987,26(22):6927-6932
Electron paramagnetic resonance (EPR) studies of the nitrosyl adduct of ferrous lactoperoxidase (LPO) confirm that the fifth axial ligand in LPO is bound to the iron via a nitrogen atom. Complete reduction of the ferric LPO sample is required in order to observe the nine-line hyperfine splitting in the ferrous LPO/NO EPR spectrum. The ferrous LPO/NO complex does not exhibit a pH or buffer system dependence when examined by EPR. Interconversion of the ferrous LPO/NO complex and the ferric LPO/NO2- complex is achieved by addition of the appropriate oxidizing or reducing agent. Characterization of the low-spin LPO/NO2- complex by EPR and visible spectroscopy is reported. The pH dependence of the EPR spectra of ferric LPO and ferric LPO/CN- suggests that a high-spin anisotropic LPO complex is formed at high pH and an acid-alkaline transition of the protein conformation near the heme site does occur in LPO/CN-. The effect of tris(hydroxymethyl)aminomethane buffer on the LPO EPR spectrum is also examined.  相似文献   

20.
We report the optical and resonance Raman spectral characterization of ferrous recombinant Chlamydomonas LI637 hemoglobin. We show that it is present in three pH-dependent equilibrium forms including a 4-coordinate species at acid pH, a 5-coordinate high spin species at neutral pH, and a 6-coordinate low spin species at alkaline pH. The proximal ligand to the heme is the imidazole group of a histidine. Kinetics of the reactions with ligands were determined by stopped-flow spectroscopy. At alkaline pH, combination with oxygen, nitric oxide, and carbon monoxide displays a kinetic behavior that is interpreted as being rate-limited by conversion of the 6-coordinate form to a reactive 5-coordinate form. At neutral pH, combination rates of the 5-coordinate form with oxygen and carbon monoxide were much faster (>10(7) microM-1 s-1). The dissociation rate constant measured for oxygen is among the slowest known, 0.014 s-1, and is independent of pH. Replacement of the tyrosine 63 (B10) by leucine or of the putative distal glutamine by glycine increases the dissociation rate constant 70- and 30-fold and increases the rate of autoxidation 20- and 90-fold, respectively. These results are consistent with at least two hydrogen bonds stabilizing the bound oxygen molecule, one from tyrosine B10 and the other from the distal glutamine. In addition, the high frequency (232 cm-1) of the iron-histidine bond suggests a structure that lacks any proximal strain thus contributing to high ligand affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号