首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
2.
3.
Microarray analysis is a powerful tool to identify the biological effects of drugs or chemicals on cellular gene expression. In this study, we compare the relationships between traditional measures of genetic toxicology and mutagen-induced alterations in gene expression profiles. TK6 cells were incubated with 0.01, 0.1, or 1.0 microM +/-anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) for 4 h and then cultured for an additional 20 h. Aliquots of the exposed cells were removed at 4 and 24 h in order to quantify DNA adduct levels by 32P post-labeling and measure cell viability by cloning efficiency and flow cytometry. Gene expression profiles were developed by extracting total RNA from the control and exposed cells at 4 and 24 h, labeling with Cy3 or Cy5 and hybridizing to a human 350 gene array. Mutant frequencies in the Thymidine Kinase and Hypoxanthine Phosphoribosyl Transferase genes were also determined. The 10alpha-(deoxyguanosin-N(2)-yl)-7alpha,8beta,9beta-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene (dG-N(2)-BPDE) adduct increased as a function of dose and was the only adduct identified. A dose-related decrease in cell viability was evident at 24 h, but not at 4 h. Cell death occurred by apoptosis. At 4 h, analysis of the gene expression profiles revealed that Glutathione Peroxidase and Gadd45 were consistently upregulated (greater than 1.5-fold and significantly (P < 0.001) greater than the control in two experiments) in response to 1.0 microM BPDE exposure. Fifteen genes were consistently down-regulated (less than 0.67-fold and significantly (P < 0.001) lower than the control in two experiments) at 4 h in cultures exposed to 1.0 microM BPDE. Genes with altered expression at 4 h included genes important in the progression of the cell-cycle and those that inhibit apoptosis. At 24 h post-exposure, 16 genes, involved in cell-cycle control, detoxification, and apoptosis were consistently upregulated; 10 genes were repressed in cultures exposed to the high dose of BPDE. Real-time quantitative PCR confirmed the differential expression of selected genes. These data suggest that changes in gene expression will help to identify effects of drugs and chemicals on molecular pathways in cells, and will provide useful information about the molecular responses associated with DNA damage. Of the endpoints evaluated, DNA adduct formation was the most sensitive indicator of DNA damage. DNA adduct formation was clearly evident at low doses, but the number of genes with significantly altered expression (P < 0.001) was minimal. Alterations in gene expression were more robust at doses associated with cellular toxicity and induction of mutations.  相似文献   

4.
Extensive gene expression analysis was carried out after a 0, 4, 36, 72, 96 h short interval successive partial hepatectomy (SISPH) was performed. A total of 185 elements were identified as differing by more than two-fold in their expression levels at one or more time points. Of these 185 elements, 103 were up-regulated, 82 were down-regulated and 86 elements were unreported genes. Quite a few genes were previously unknown to be involved in liver regeneration (LR). Using cluster and general analysis, we found that the genes at five time points of the SISPH share eight different types of different expression profiles and eight distinct temporal induction or suppression patterns. A comparison of the gene expression in SISPH with that after PH found that 41 genes were specifically altered in SISPH, and 144 genes were simultaneously up-regulated or down-regulated in SISPH and after PH, but they were present in different amounts at the different time points. The conclusions are that (i) microarrays combined with suppressive subtractive hybridization (SSH) can effectively identify genes involved in LR on a large scale; (ii) more genes were up-regulated than down-regulated; (iii) there are fewer abundantly expressed genes than those with increased levels of 2–5 fold.  相似文献   

5.
After partial hepatectomy (PH), the remnant paren-chyma can completely recover lost liver mass and function in about one week[1,2]. Although adult hepa-tocytes are normally quiescent, they are readily primed to pass from G0 to G1 phase within 2―6 h after PH. The first peak of DNA synthesis appears 24 h after PH, while cell division peaks at 36 h. The liver cells then enter a second cell cycle, and redifferentiation and reconstruction of structure and function[3―6] take place. A great nu…  相似文献   

6.
7.
Radiotherapy has played a key role in the control of tumor growth in many cancer patients. It is usually difficult to determine what fraction of the tumor cell population is radioresistant after a course of radiotherapy. The response of tumor cells to radiation is believed to be accompanied by complex changes in the gene expression pattern. It may be possible to use these to sensitize radioresistant tumor cells and improve radiocurability. Based on the biological effects of ionizing radiation, in the present study, we developed one oligonucleotide microarray to analyze the expression of 143 genes in cells of two lung cancer cell lines with different radiosensitivities. Compared to NCI-H446 cells, expression of 18 genes significantly increased the basal levels in the radioresistant A549 cells, in which eight genes were up-regulated and 10 genes were down-regulated. In A549 cells irradiated with 5 Gy, 22 (19 up-regulated and three down-regulated) and 26 (eight up-regulated and 18 down-regulated) differentially expressed genes were found 6 and 24 h after irradiation, respectively. In NCI-H446 cells, the expression of 17 (nine up-regulated and eight down-regulated) and 18 (six up-regulated and 12 down-regulated) genes was altered 6 and 24 h after irradiation, respectively. RT-PCR was performed, and we found that MDM2, BCL2, PKCZ and PIM2 expression levels were increased in A549 cells and decreased in NCI-H446 cells after irradiation. Genes involved in DNA repair, such as XRCC5, ERCC5, ERCC1, RAD9A, ERCC4 and the gene encoding DNA-PK, were found to be increased to a higher level in A549 cells than in NCI-H446 cells. Antisense suppression of MDM2 resulted in increased radiosensitivity of A549 cells. Taken together, these results demonstrate the possibility that a group of genes involved in DNA repair, regulation of the cell cycle, cell proliferation and apoptosis is responsible for the different radioresistance of these two lung cancer cells. This list of genes may be useful in attempts to sensitize the radioresistant lung cancer cells.  相似文献   

8.
9.
Jung HG  Shin JH  Kim KW  Yu JY  Kang KK  Ahn BO  Kwon JW  Yoo M 《Life sciences》2007,80(7):699-708
Gene expression changes in the corpus cavernosum of hypercholesterolemic rats were not fully assessed, which were not previously known to be associated with hypercholesterolemia-related erectile dysfunction (ED). To provide molecular insight into pathophysiology of hypercholesterolemia-related ED and to investigate the effects of Udenafil, a phosphodiesterase type 5 (PDE5) inhibitor, on gene expression, we performed microarray gene expression analysis via gene discovery methods using GenoCheck platinum cDNA chip (Ansan, S. Korea). Sixteen male Sprague-Dawley rats were fed 2% cholesterol diet for 5 months. Half of them were orally treated with Udenafil (20 mg/kg/day) simultaneously. Eight age-matched rats fed normal diet were served as normal control. RNA was extracted from corpus cavernosum and microarray analysis was performed. Decreased erectile responses and hypercholesterolemia were observed in hypercholesterolemic control group. In microarray analysis, 122 candidate genes were noted to be altered based on the magnitude of expression changes, which includes 44 down-regulated and 78 up-regulated genes compared with the age-matched normal controls. These changes were, however, significantly attenuated by treatment with Udenafil. Out of the 78 up-regulated genes, 8 genes were significantly decreased by the chronic treatment with Udenafil. The altered genes were cytochrome oxidase biogenesis protein OXA1, skeletal muscle myosin heavy chain, lipophilin, fast skeletal muscle isoforms beta/alpha, myosin light chain 3, cytochrome c oxidase, adipocyte fatty acid binding protein and one EST gene. In contrast, among the 44 down-regulated genes, Kruppel-like factor 5 and cyclin D1 genes were increased after the Udenafil treatment. These results provide the molecular basis for understanding the pathogenesis of hypercholesterolemia-related ED and offer clues on determining the underlying action mechanism of a PDE5 inhibitor.  相似文献   

10.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

11.
12.
13.
14.
采用cDNA微阵列技术检测了HeLa细胞被痢疾杆菌侵袭1h和3h后的基因表达变化,共发现2倍以上差异表达基因752个,上调基因有509个,下调基因有306个,并初步推测HeLa细胞通过激活某些信号通路,诱导表达多个基因,产生整体的细胞效应,以对抗痢疾杆菌的侵袭。对显著差异表达的两个基因TNFR 1B和ERBB2,在痢疾杆菌侵袭HeLa细胞1h和3h后的表达量经荧光实时定量PCR验证,确定这两个基因的确在痢疾杆菌侵袭期间高表达,它们在细胞对痢疾杆菌2457T侵袭反应中起重要的作用。这些结果促进了对痢疾杆菌分子致病机理的认识,也为形成预防和治疗痢疾的策略提供了理论基础。  相似文献   

15.
The pH response of Shigella flexneri 2a 301 was identified by gene expression profiling. Gene expression profiles of cells grown in pH 4.5 or 8.6 were compared with the profiles of cells grown at pH 7.0. Differential expression was observed for 307 genes: 97 were acid up-regulated, 102 were acid down-regulated, 91 were base up-regulated, and 86 were base down-regulated. Twenty-seven genes were found to be both acid and base up-regulated, and 29 genes were both acid and base down-regulated. This study showed that (1) the most pH-dependent genes regulate energy metabolism; (2) the RpoS-dependent acid-resistance system is induced, while the glutamate-dependent acid resistance system is not; (3) high pH up-regulates some virulence genes, while low pH down-regulates them, consistent with Shigella infection of the low gut; and (4) several cross-stress response genes are induced by pH changes. These results also illustrate that many unknown genes are significantly regulated under acid or basic conditions, providing researchers with important information to characterize their function.  相似文献   

16.
A differentiation resistant subclone of HL-60, DMSOr, was removed from the selective pressure of dimethyl sulfoxide and characterized with a new stable phenotype of reversible differentiation. DMSOr cells, when treated with 1.25% dimethyl sulfoxide, differentiated in a manner similar to the parental HL-60 with respect to morphological changes, increase in superoxide production, and withdrawal from cell cycle. Upon removal of the dimethyl sulfoxide at points normally associated with commitment to terminal differentiation, DMSOr reverted to the immature phenotype. This demonstrates an uncoupling of the morphological, functional, and antiproliferative effects of differentiation from commitment to terminal differentiation. Associated with the reversible phenotype of DMSOr was an altered expression of the c-myb oncogene. In HL-60, c-myb expression was down-regulated by 72 h and completely diminished by 144 h. Northern blot analysis of DMSOr demonstrated greater levels of expression of c-myb at 72 and 144 h. Similar results were shown with histone H4, cdc2 kinase, and, to a lesser extent, ornithine decarboxylase. The c-myb related gene B-myb did not show altered regulation during differentiation. The results suggest that altered expression of genes that control cell cycle may be critical for the reversible phenotype of DMSOr.  相似文献   

17.
E P Browne  B Wing  D Coleman  T Shenk 《Journal of virology》2001,75(24):12319-12330
The effect of human cytomegalovirus (HCMV) infection on cellular mRNA accumulation was analyzed by gene chip technology. During a 48-h time course after infection of human diploid fibroblasts, 1,425 cellular mRNAs were found to be up-regulated or down-regulated by threefold or greater in at least two consecutive time points. Several classes of genes were prominently affected, including interferon response genes, cell cycle regulators, apoptosis regulators, inflammatory pathway genes, and immune regulators. The number of mRNAs that were up-regulated or down-regulated were roughly equal over the complete time course. However, for the first 8 h after infection, the number of up-regulated mRNAs was significantly less than the number of down-regulated mRNAs. By analyzing the mRNA expression profile of cells infected in the presence of cycloheximide, it was found that a minimum of 25 mRNAs were modulated by HCMV in the absence of protein synthesis. These included mRNAs encoded by a small number of interferon-responsive genes, as well as beta interferon itself. Cellular mRNA levels in cytomegalovirus-infected cells were compared to the levels in cells infected with UV-inactivated virus. The inactivated virus caused the up-regulation of a much greater number of mRNAs, many of which encoded proteins with antiviral roles, such as interferon-responsive genes and proinflammatory cytokines. These data argue that one or more newly synthesized viral gene products block the induction of antiviral pathways that are triggered by HCMV binding and entry.  相似文献   

18.
Song JH  Kim JM  Kim SH  Kim HJ  Lee JJ  Sung MH  Hwang SY  Kim TS 《Life sciences》2003,73(13):1705-1719
It is now recognized that precise patterns of differentially expressed genes ultimately direct a particular cell toward a given lineage. In this study, we compared the expression profiles of cancer-related genes by cDNA microarray analysis during the differentiation of human promyelocytic leukemia HL-60 cells into either monocytes or granulocytes. RNA was isolated at times 0, 6, 12, 24, 36, 48, and 72 h following stimulation of differentiation with all-trans retinoic acid (all-trans RA) or 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], and hybridized to the microarray gene chips containing 872 genes related to cell-cycles, oncogenes and leukemias. Several genes were commonly or differentially regulated during cell differentiation into either lineage, as demonstrated by both hierarchical and self-organizing map clustering analysis. At 72 h the expression levels of 45 genes were commonly up- or down-regulated at least a twofold in both lineages. Most importantly, 32 genes including alpha-L-fucosidase gene and adducin gamma subunit gene were up- or down-regulated only in all-trans RA-treated HL-60 cells, while 12 genes including interleukin 1beta and hypoxia-inducible factor 1alpha were up- or down-regulated only in 1,25-(OH)(2)D(3)-treated HL-60 cells. The expression of selected genes was confirmed by Northern blot analysis. As expected, some genes identified have not been examined during HL-60 cell differentiation into either lineage. The identification of genes associated with a specific differentiation lineage may give important insights into functional and phenotypic differences between two lineages of HL-60 cell differentiation.  相似文献   

19.
20.
Wu EH  Li HS  Zhao T  Fan JD  Ma X  Xiong L  Li WJ  Zhu LL  Fan M 《生理学报》2007,59(2):227-232
低氧可以促进人骨髓间充质干细胞(human bone marrow-derived mesenchymal stem cells,hMSCs)增殖。为探讨其可能机制,本实验采用cDNA芯片技术动态检测低氧促进hMSCs增殖过程中基因表达的变化,用RT-PCR验证芯片结果。结果显示,在含21 329条基因探针的芯片上,检测到282个基因差异表达,其中代谢类基因最多;差异表达基因的数目随低氧时间不同而变化,其中24 h时差异表达基因的数目最多。差异表达基因中4个为已知的低氧诱导因子-1(hypoxia- inducible factor 1,HIF-1)靶基因,在低氧处理36 h时都基本上调。此外,差异表达基因中有10个连续变化的基因,这些基因中既有上调基因也有下调基因。4个HIF-1靶基因和连续变化的基因的RT1-PCR结果大部分与cDNA芯片结果一致。结果提示,低氧促进hMSCs增殖是多基因参与的过程,可能与HIF-1及其下游信号通路有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号