首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. For 13 years the response of the plankton and fish community to a decline in external phosphorus loading was studied in eight lakes with a mean depth <5 m. We conducted chi‐square analyses of sign of slope (positive or negative) of bimonthly averages of plankton variables for the eight lakes versus time. For fish, we compared results from two periods, i.e. 1989–1994 versus 1994–2001 as less data were available. 2. Fish community structure tended to respond to the lowered concentration of total phosphorus (TP), although not all changes were significant. While catch per unit effort (multi‐mesh sized gill nets) of cyprinids (especially bream, Abramis brama and roach, Rutilus rutilus) was highest in the first 5‐year period, the quantitative importance particularly of perch (Perca fluviatilis), pike (Esox lucius) and rudd (Scardinius erythropthalmus), a littoral species, increased significantly after 1994. 3. No changes occurred in zooplankton biomass, except for an increase in November and December. Biomass of small cladocerans, however, declined during summer and autumn, and the proportion of Daphnia to cladoceran biomass also increased. Average body weight of Daphnia and that of all cladocerans increased. The proportion of calanoids among copepods decreased in summer and the average body weight of cyclopoids and calanoids decreased during summer and autumn/early winter. 4. Total biovolume of phytoplankton declined significantly in March to June and tended to decline in November and December as well, while no significant changes were observed during summer and autumn. Non‐heterocystous cyanobacteria showed a decreasing trend during summer and autumn, while heterocystous cyanobacteria increased significantly in late summer. An increase in late summer was also evident for cryptophytes and chrysophytes, while diatoms tended to decline during most seasons. 5. We conclude that phytoplankton, and probably also fish, responded rapidly to reduced loading, whereas the effect on zooplankton was less pronounced. However, increases in body weight of cladocerans and the zooplankton to phytoplankton biomass ratio during summer indicate reduced top‐down control on zooplankton and enhanced grazing on phytoplankton. This conclusion is supported by a tendency for fish biomass to decline and a shift towards greater dominance by piscivores and, thus, an increased likelihood of predator control of zooplanktivorous cyprinids.  相似文献   

2.
1. The responses of nutrient concentrations, plankton, macrophytes and macrozoobenthos to a reduction in external nutrient loading and to contemporary climatic change were studied in the shallow, moderately flushed Lake Müggelsee (Berlin, Germany). Weekly to biweekly data from 1979 to 2003 were compared with less frequently collected historical data. 2. A reduction of more than 50% in both total phosphorus (TP) and total nitrogen (TN) loading from the hypertrophic (1979–90) to the eutrophic period (1997–2003) was followed by an immediate decline in TN concentrations in the lake. TP concentrations only declined during winter and spring. During summer, phosphorus (P) release from the sediments was favoured by a drastic reduction in nitrate import. Therefore, Müggelsee acted as a net P source for 6 years after the external load reduction despite a mean water retention time of only 0.1–0.16 years. 3. Because of the likely limitation by P in spring and nitrogen (N) in summer, phytoplankton biovolume declined immediately after nutrient loading was reduced. The formerly dominant cyanobacteria (Oscillatoriales) Limnothrix redekei and Planktothrix agardhii disappeared, but the mean biovolume of the N2‐fixing species Aphanizomenon flosaquae remained constant. 4. The abundance of Daphnia spp. in summer decreased by half, while that of cyclopoid copepod species increased. Abundances of benthic macroinvertebrates (mainly chironomids) decreased by about 80%. A resource control of both phytoplankton and zooplankton is indicated by significant positive correlations between nutrient concentrations and phytoplankton biovolume and between phytoplankton and zooplankton biomass. 5. Water transparency in spring increased after nutrient reduction and resulted in re‐colonisation of the lake by Potamogeton pectinatus. However, this process was severely hampered by periphyton shading and grazing by waterfowl and fish. 6. Water temperatures in Müggelsee have increased in winter, early spring and summer since 1979. The earlier development of the phytoplankton spring bloom was associated with shorter periods with ice cover, while direct temperature effects were responsible for the earlier development of the daphnid maximum in spring.  相似文献   

3.
1. Monitoring at fortnightly to monthly intervals of a very shallow, lowland lake over 24 years has enabled the time course of recovery from nutrient enrichment to be investigated after high external P loading of the lake (>10 g P m?2 year?1) was reduced between 1977 and 1980. 2. The lake showed a relatively rapid response during the spring and early summer, with a reduction in phytoplankton biomass occurring after 5 years when soluble reactive phosphorus concentration was <10 μg L?1. 3. However, during the later summer the response was delayed for 15 years because of sustained remobilisation of phosphorus from the sediment. The greater water clarity in spring and a gradual shift from planktonic to benthic algal growth may be related to the reduction in internal loading after 15 years. 4. Changes in the phytoplankton community composition were also observed. Centric diatoms became less dominant in the spring, and the summer cyanobacteria populations originally dominated by non‐heterocystous species (Limnothrix/Planktothrix spp.) almost disappeared. Heterocystous species (Anabaena spp. and Aphanizomenon flosaquae) were slower to decline, but after 20 years the phytoplankton community was no longer dominated by cyanobacteria. 5. There were no substantial changes in food web structure following re‐oligotrophication. Total zooplankton biomass decreased but body size of Daphnia hyalina, the largest zooplankton species in the lake, remained unchanged, suggesting that the fish population remained dominated by planktivorous species. 6. Macrophyte growth was still largely absent after 20 years, although during the spring water clarity may have become sufficient for macrophytes to re‐establish.  相似文献   

4.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

5.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

6.
Lyche  Anne  Faafeng  Bjørn A.  Brabrand  Åge 《Hydrobiologia》1990,(1):251-261

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with highversus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatmentversus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomassvia two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C:P-ratio in the phytoplankton cells.

  相似文献   

7.
1. To improve mechanistic understanding of plankton responses to eutrophication, a mesocosm experiment was performed in the shallow littoral zone of a south Swedish lake, in which nutrient and fish gradients were crossed in a fully factorial design. 2. Food chain theory accurately predicted total biomass development of both phyto‐ and zooplankton. However, separating zooplankton and algae into finer taxonomic groups revealed a variety of responses to both nutrient and fish gradients. 3. That both nutrients and fish are important for phytoplankton dynamics was seen more clearly when viewing each algal group separately, than drawing conclusions only from broad system variables such as chlorophyll a concentration or total phytoplankton biovolume. 4. In some taxa, physiological constraints (e.g. sensitivity to high pH and low concentrations of free CO2) and differences in competitive ability may be more important for the biomass development than fish predation, grazing by herbivorous zooplankton, and nutrient availability. 5. We conclude that food chain theory accurately predicted responses in system variables, such as total zooplankton or algal biomass, which are shaped by the dynamics of certain strong interactors (‘keystone species’), such as large cladocerans, cyanobacteria and edible algae (<50 μm), whereas responses at finer taxonomic levels cannot be predicted from current theory.  相似文献   

8.
1. The variable ecological response of lakes to reduced nutrient loading (oligotrophication) at sites in Europe and North America was discussed at a workshop held in Silkeborg (Denmark) in January 2003. Studies of lake oligotrophication were presented based on both long‐term monitoring and data generated by palaeolimnological methods. 2. This introduction to the special issue provides short summaries of a series of the papers presented and their limnological context. Results show that the majority of lakes had approached a new equilibrium of phosphorus (P) and nitrogen (N) concentrations 10–15 years (P) and 0–5 years (N) after a major reduction in loading, irrespective of hydraulic retention time. Phytoplankton biomass decreased and a shift towards meso‐oligotrophic species dominance occurred. The fish responded surprisingly fast to the loading reduction in most lakes. As a result, the percentage of piscivores increased and total fish biomass declined markedly, which may explain an increase in the body size of cladocerans and an increase in the zooplankton to phytoplankton biomass ratio seen in many of the lakes. 3. Monitoring has in general been initiated after the effects of eutrophication became apparent. In this context palaeolimnological techniques become very useful because they allow limnologists to extend time scales of coverage and to define restoration targets and baseline conditions. Moreover, lake sediments pre‐dating anthropogenic disturbance can be used to examine ecological response to, for instance, climate variability, allowing problems associated with multiple stressors to be addressed. 4. It is concluded that there is a great need for a synthetic, holistic approach to studying lake oligotrophication, combining multiple techniques of palaeolimnological sediment analysis with detailed but temporally limited long‐term monitoring of chemical and biological variables. This is important, not least to assess future responses to nutrient loading reductions, as global warming will interact with a range of external stressors and ultimately affect lake management strategies to deal with the resultant feedbacks.  相似文献   

9.
The hypotheses that larval fish density may potentially affect phytoplankton abundance through regulating zooplankton community structure, and that fish effect may also depend on nutrient levels were tested experimentally in ponds with three densities of larval walleye, Stizostedion vitreum (0, 25, and 50 fish m–3), and two fertilizer types (inorganic vs organic fertilizer). A significant negative relationship between larval fish density and large zooplankton abundance was observed despite fertilizer types. Larval walleye significantly reduced the abundances of Daphnia, Bosmina, and Diaptomus but enhanced the abundance of various rotifer species (Brachionus, Polyarthra, and Keratella). When fish predation was excluded, Daphnia became dominant, but Daphnia grazing did not significantly suppress blue-green algae. Clearly, larval fish can be an important regulator for zooplankton community. Algal composition and abundance were affected more by fertilizer type than by fish density. Inorganic fertilizer with a high N:P ratio (20:1) enhanced blue-green algal blooms, while organic fertilizer with a lower N:P ratio (10:1) suppressed the abundance of blue-green algae. This result may be attributed to the high density of blue-green algae at the beginning of the experiment and the fertilizer type. Our data suggest that continuous release of nutrients from suspended organic fertilizer at a low rate may discourage the development of blue-green algae. Nutrient inputs at a low N:P ratio do not necessarily result in the dominance of blue-green algae.  相似文献   

10.
11.
  • 1 Planktivorous fish were hypothesised to influence the abundance of algal biomass in lakes by changing zooplankton grazing, affecting zooplankton nutrient recycling and by direct recycling of nutrients to phytoplankton. The relative roles of direct fish effects vs. zooplankton grazing were tested in mesocosm experiments by adding to natural communities large grazing zooplankton (Daphnia carinata) and small planktivorous fish (mosquitofish or juveniles of Australian golden perch).
  • 2 The addition of Daphnia to natural communities reduced the numbers of all phytoplankton less than 30 µm in size, but did not affect total biomass of phytoplankton as large Volvox colonies predominated.
  • 3 The addition of Daphnia also reduced the abundance of some small (Moina, Bosmina, Keratella) and large (adult Boeckella) zooplankton, suggesting competitive interactions within zooplankton.
  • 4 The addition of mosquitofish to communities containing Daphnia further reduced the abundance of some small zooplankton (Moina, Keratella), but increased the numbers of Daphnia and adult Boeckella. In spite of the likely increase in grazing due to Daphnia, the abundance of total phytoplankton and dominant alga Volvox did not decline in the presence of mosquitofish but was maintained at a significantly higher level than in control.
  • 5 The addition of juveniles of golden perch to communities containing Daphnia reduced the abundance of small zooplankton (Moina), increased the abundance of large zooplankton (adult Boeckella) but had no significant effect on Daphnia and total phytoplankton abundance.
  • 6 The results of the present study suggest that some planktivorous fish can promote the growth of phytoplankton in a direct way, probably by recycling nutrients, and even in the presence of large grazers. However, the manifestation of the direct effect of fish can vary with fish species.
  相似文献   

12.
J. F. Perrin 《Hydrobiologia》1980,70(3):217-224
The net effect of zooplankton on phytoplankton productivity was investigated through experiments using natural concentrations of plankton in the epilimnion of Castle Lake, California. Zooplankton enhanced algal productivity during July and August, and nocturnal grazers caused greater proportionate increases than did daytime densities. Consumers had neutral or negative effects in September. Animal biomass was associated significantly with enhanced productivity for the experiment in late July, and with decreased growth rates in the last trial of September. The direct relationship between the activities of zooplankton and primary productivity observed in other lakes is qualified by this seasonal change in net effect. The removal of algae by grazing, increases in the productivity to biomass ratio through nutrient regeneration and temporary photosynthetic inhibition from ammonia excretion appear to have shifted in relative impact during the 3 month experimental period.  相似文献   

13.
Lake Chilwa, a fairly large, turbid, brackish and very shallow endorheic lake in Malawi, Central Africa, dried up completely in 1968 and filled up again in the following wet season. Compared with the zooplankton in the drying, filling and post-filling phases (1966–1971), differences in their composition, density, distribution and reproduction were found in 1975–1976, a year when the lake was 1–2 metres deeper. This situation is discussed in relation to environmental factors, fish predation and the supply of detritus from the surrounding Typha swamp, to illustrate the relative stability of the zooplankton populations in periods between lake recessions.University of Malawi  相似文献   

14.
In September 1987 the shallow, eutrophic, Lake Mosvatn was treated with rotenone to eliminate planktivorous fish (mainly whitefish,Coregonus lavaretus, L.), and the effects were studied. The first summer after treatment the zooplankton community changed markedly from rotifer dominance and few grazers, to a community with few rotifers and many grazers. Accordingly there was a fivefold increase in the biomass ofDaphnia galeata. Adult females ofD. galeata approximately doubled in weight. The decrease in rotifer biomass was probably mainly due to a loss of food by competition with the daphnids. The phytoplankton community was also markedly affected. Prior to treatment Secchi depth was 1.7 m and Chl-a 23μg l−1 in the summer. After treatment there was an increase in the proportion of small and gelatinous algae and the mean chlorophyll concentration fell to 7μg Chl-a l−1. Secchi depth increased to>2.3 m (bottom-sight most of the season). After the treatment there were also fewer cyanobacterial blooms. This seems to be related to oligotrophication caused indirectly by increased grazing by the zooplankton. Total nutrient concentrations were affected. Prior to treatment the mean summer concentration of total phosphate was 44μg P l−1. This decreased to 29μg P l−1 in the first summer and 23μg P l−1 the second summer after the treatment. Total nitrogen decreased from 0.68 mg N l−1 before treatment to 0.32 mg N l−1 the first summer after the treatment. The phosphate loading was not reduced, therefor it can be concluded that the fish removal provided a biomanipulation which caused the more oligotrophic conditions.  相似文献   

15.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

16.
Experiments have revealed much about top‐down and bottom‐up control in ecosystems, but manipulative experiments are limited in spatial and temporal scale. To obtain a more nuanced understanding of trophic control over large scales, we explored long‐term time‐series data from 13 globally distributed lakes and used empirical dynamic modelling to quantify interaction strengths between zooplankton and phytoplankton over time within and across lakes. Across all lakes, top‐down effects were associated with nutrients, switching from negative in mesotrophic lakes to positive in oligotrophic lakes. This result suggests that zooplankton nutrient recycling exceeds grazing pressure in nutrient‐limited systems. Within individual lakes, results were consistent with a ‘seasonal reset’ hypothesis in which top‐down and bottom‐up interactions varied seasonally and were both strongest at the beginning of the growing season. Thus, trophic control is not static, but varies with abiotic conditions – dynamics that only become evident when observing changes over large spatial and temporal scales.  相似文献   

17.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

18.
Between 1951 and 1979, total phosphorous concentrations in Lake Constance increased from 7 to 87 μg L?1. Following wastewater treatment, phosphorus levels were brought under control, returning to 7.6 μg L?1 by spring 2007. The biological and chemical data from 1980 to 2004 were first modelled by seasonal time series analyses and then used to create a general model. Excluding collinear variables allowed the data set to be condensed to six variables that could be fitted into a general linear model that explained ~75% of the observed annual variation in chlorophyll a. A clear seasonal influence was apparent, with chlorophyll a tracking trends in temperature and the progress of spring. A nonseasonal influence was also observed in the interaction of two biological components, the proportion of phytoplankton biomass available to Daphnia (i.e. the percentage of ingestible size <30 μm) and the grazing intensity. In combination, these biotic variables had a negative impact on chlorophyll a levels. In contrast, the concentration of soluble reactive phosphorus (SRP) correlated positively with chlorophyll a. The effect of SRP showed a significant seasonal component, as it was more abundant in spring than at other times of year. In general, the model predicts a negative exponential response of chlorophyll a to further depletion of SRP in Lake Constance, while the temperature trends predicted by current global warming scenarios will result in a moderate increase in productivity. Data from 2005 to 2007 were used to verify the model. The modelled chlorophyll a values were nonbiased and showed a close match to the measured values (r2: 75%). Thus the applicability, reliability, and informative value of the model for pelagic Lake Constance was confirmed. The approach might easily be applied to other waters.  相似文献   

19.
In the shallow, nutrient-rich dammed-up lake Hjarbæk Fjord the balance between phytoplankton, zooplankton, and fish was completely disturbed during the summer period. Extensive growth of small blue-green algae (Oscillatoria cfr. trichoides, Pseudanabaena galeata) and chlorococcal green algae (Scenedesmus spp., Monoraphidium contortum, Actinastrum hantzschii) induced a pH rise to 10.5 in July. Fish were driven into the rivers, and many that did not escape died. After the fish had disappeared daphniae multiplied explosively and grazed away the major part of the phytoplankton. Ammonia concentrations rose and oxygen concentrations dropped to noxious levels for highly sensitive fish in August–September. Larger phytoplankton species (Aphanizomenon flos-aquae, Pediastrum boryanum, Pandorina morum, a. o.) were not grazed by the daphniae and gave rise to a maximum of copepods in September. Fish returned to the lake in October, when pH, ammonia, and oxygen levels had normalized.  相似文献   

20.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号