共查询到20条相似文献,搜索用时 15 毫秒
1.
The spindle pole body protein Cdc11p links Sid4p to the fission yeast septation initiation network 下载免费PDF全文
The Schizosaccharomyces pombe septation initiation network (SIN) signals the onset of cell division from the spindle pole body (SPB) and is regulated by the small GTPase Spg1p. The localization of SIN components including Spg1p to the SPB is required for cytokinesis and is dependent on Sid4p, a constitutive resident of SPBs. However, a direct interaction between Sid4p and other members of the SIN has not been detected. To understand how Sid4p is linked to other SIN components, we have begun to characterize an S. pombe homolog of the Saccharomyces cerevisiae SPB protein Nud1p. We have determined that this S. pombe Nud1p homolog corresponds to Cdc11p, a previously uncharacterized SIN element. We report that Cdc11p is present constitutively at SPBs and that its function appears to be required for the localization of all other SIN components to SPBs with the exception of Sid4p. The Cdc11p C terminus localizes the protein to SPBs in a Sid4p-dependent manner, and we demonstrate a direct Cdc11p-Sid4p interaction. The N-terminus of Cdc11p is required for Spg1p binding to SPBs. Our studies indicate that Cdc11p provides a physical link between Sid4p and the Spg1p signaling pathway. 相似文献
2.
Morrell JL Tomlin GC Rajagopalan S Venkatram S Feoktistova AS Tasto JJ Mehta S Jennings JL Link A Balasubramanian MK Gould KL 《Current biology : CB》2004,14(7):579-584
The Schizosaccharomyces pombe septation initiation network (SIN) triggers actomyosin ring constriction, septation, and cell division. It is organized at the spindle pole body (SPB) by the scaffold proteins Sid4p and Cdc11p. Here, we dissect the contributions of Sid4p and Cdc11p in anchoring SIN components and SIN regulators to the SPB. We find that Sid4p interacts with the SIN activator, Plo1p, in addition to Cdc11p and Dma1p. While the C terminus of Cdc11p is involved in binding Sid4p, its N-terminal half is involved in a wide variety of direct protein-protein interactions, including those with Spg1p, Sid2p, Cdc16p, and Cdk1p-Cdc13p. Given that the localizations of the remaining SIN components depend on Spg1p or Cdc16p, these data allow us to build a comprehensive model of SIN component organization at the SPB. FRAP experiments indicate that Sid4p and Cdc11p are stable SPB components, whereas signaling components of the SIN are dynamically associated with these structures. Our results suggest that the Sid4p-Cdc11p complex organizes a signaling hub on the SPB and that this hub coordinates cell and nuclear division. 相似文献
3.
4.
X Le Goff S Buvelot E Salimova F Guerry S Schmidt N Cueille E Cano V Simanis 《FEBS letters》2001,508(1):136-142
In order to identify regulators of the Schizosaccharomyces pombe septation initiation network (SIN), which signals the onset of cell division, we have isolated extragenic suppressors of mutations in the GTPase spg1p, which is a central element in this pathway. One of these encodes the protein phosphatase 2A (PP2A) B'-regulatory subunit par1p. Loss of par1p function rescues mutants in cdc11, cdc7, and spg1, but no other SIN mutants. Our data suggest that PP2A-par1p acts as a negative regulator of SIN signalling. 相似文献
5.
Sce3, a suppressor of the Schizosaccharomyces pombe septation mutant cdc11, encodes a putative RNA-binding protein. 总被引:1,自引:0,他引:1 下载免费PDF全文
In the fission yeast Schizosaccharomyces pombe, the cdc11 gene is required for the initiation of septum formation at the end of mitosis. The sce3 gene was cloned as a multi-copy suppressor of the heat-sensitive mutant cdc11-136. When over-expressed, it rescues all mutants of cdc11 and also a heat-sensitive allele of cdc14, but not the cdc14 null mutant. Deletion shows that sce3 is not essential for cell proliferation. It encodes a putative RNA-binding protein which shows homology to human eIF4B. Immunolocalisation indicates that Sce3p is located predominantly in the cytoplasm. Elevated expression of sce3 increases the steady-state level of cdc14 mRNA. Possible mechanisms of its action are discussed. 相似文献
6.
Victor A. Tallada Kenji Tanaka Mitsuhiro Yanagida Iain M. Hagan 《The Journal of cell biology》2009,185(5):875-888
The fission yeast spindle pole body (SPB) comprises a cytoplasmic structure that is separated from an ill-defined nuclear component by the nuclear envelope. Upon mitotic commitment, the nuclear envelope separating these domains disperses as the two SPBs integrate into a hole that forms in the nuclear envelope. The SPB component Cut12 is linked to cell cycle control, as dominant cut12.s11 mutations suppress the mitotic commitment defect of cdc25.22 cells and elevated Cdc25 levels suppress the monopolar spindle phenotype of cut12.1 loss of function mutations. We show that the cut12.1 monopolar phenotype arises from a failure to activate and integrate the new SPB into the nuclear envelope. The activation of the old SPB was frequently delayed, and its integration into the nuclear envelope was defective, resulting in leakage of the nucleoplasm into the cytoplasm through large gaps in the nuclear envelope. We propose that these activation/integration defects arise from a local deficiency in mitosis-promoting factor activation at the new SPB. 相似文献
7.
The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. 总被引:2,自引:1,他引:2 下载免费PDF全文
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB. 相似文献
8.
Interaction with calmodulin is required for the function of Spc110p, an essential component of the yeast spindle pole body. 总被引:11,自引:2,他引:9 下载免费PDF全文
NUF1/SPC110, encoding a nuclear filament-related protein which is a component of the yeast spindle pole body (SPB), has been identified in a screen designed to isolate genes encoding targets of yeast calmodulin. Spc110p interacts with calmodulin by two different criteria and the calmodulin interacting region has been localized within the C-terminus of the protein. Point mutations between residues 898 and 917 further define the calmodulin binding site within this region. Mutations in this domain which abolish calmodulin binding in vitro prevent Spc110p function in vivo, demonstrating that calmodulin binding by Spc110p has important functional consequences. In keeping with a role for calmodulin in Spc110p function, we show that calmodulin localizes to the yeast SPB when cells are prepared under appropriate conditions. Non-functional mutant Spc110 proteins which cannot bind calmodulin are present at lowered steady-state levels in the cell; when their level is increased by elevated gene dosage, partial recovery of Spc110p function is seen. Overexpression of calmodulin suppresses the defect(s) associated with the mutant Spc110 proteins, supporting the notion that Spc110p stability is a consequence of its ability to bind calmodulin and pointing to a direct role for calmodulin in Spc110p function. 相似文献
9.
Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body 下载免费PDF全文
Rosenberg JA Tomlin GC McDonald WH Snydsman BE Muller EG Yates JR Gould KL 《Molecular biology of the cell》2006,17(9):3793-3805
The spindle-pole body (SPB), the yeast analog of the centrosome, serves as the major microtubule (MT) organizing center in the yeast cell. In addition to this central function, the SPB organizes and concentrates proteins required for proper coordination between the nuclear-division cycle and cytokinesis. For example, the Schizosaccharomyces pombe septation-initiation network (SIN), which is responsible for initiating actomyosin ring constriction and septation, is assembled at the SPB through its two scaffolding components, Sid4 and Cdc11. In an effort to identify novel SIN interactors, we purified Cdc11 and identified by mass spectrometry a previously uncharacterized protein associated with it, Ppc89. Ppc89 localizes constitutively to the SPB and interacts directly with Sid4. A fusion between the N-terminal 300 amino acids of Sid4 and a SPB targeting domain of Ppc89 supplies the essential function of Sid4 in anchoring the SIN. ppc89Delta cells are inviable and exhibit defects in SPB integrity, and hence in spindle formation, chromosome segregation, and SIN localization. Ppc89 overproduction is lethal, resulting primarily in a G2 arrest accompanied by massive enlargement of the SPB and increased SPB MT nucleation. These results suggest a fundamental role for Ppc89 in organization of the S. pombe SPB. 相似文献
10.
The fission yeast Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin contractile ring. Precisely at the end of anaphase, the ring begins to constrict and the septum forms. Proper coordination of cell division with mitosis is crucial to ensure proper segregation of chromosomes to daughter cells. The Sid2p kinase is one of several proteins that function as part of a novel signaling pathway required for initiation of medial ring constriction and septation. Here, we show that Sid2p is a component of the spindle pole body at all stages of the cell cycle and localizes transiently to the cell division site during medial ring constriction and septation. A medial ring and an intact microtubule cytoskeleton are required for the localization of Sid2p to the division site. We have established an in vitro assay for measuring Sid2p kinase activity, and found that Sid2p kinase activity peaks during medial ring constriction and septation. Both Sid2p localization to the division site and activity depend on the function of all of the other septation initiation genes: cdc7, cdc11, cdc14, sid1, spg1, and sid4. Thus, Sid2p, a component of the spindle pole body, by virtue of its transient localization to the division site, appears to determine the timing of ring constriction and septum delivery in response to activating signals from other Sid gene products. 相似文献
11.
Spc42p: a phosphorylated component of the S. cerevisiae spindle pole body (SPD) with an essential function during SPB duplication 总被引:4,自引:0,他引:4 下载免费PDF全文
《The Journal of cell biology》1996,132(5):887-901
The 42-kD component of the S. cerevisiae spindle pole body (SPB) localizes to the electron-dense central plaque of the SPB. We have cloned the corresponding gene SPC42 (spindle pole component) and show that it is essential. Seven temperature-sensitive (ts) mutants in SPC42 were prepared by error-prone PCR. We found that a change to a proline residue in a potential coiled-coil region of Spc42p was responsible for the ts phenotype in at least three alleles, suggesting that formation of the coiled-coil is essential in normal function. The mutant cells showed a phenotype of predominantly single or bilobed SPBs often with an accumulation of unstructured electron-dense material associated with the bridge structure adjacent to the SPB. This phenotype suggests a defect in SPB duplication. This was confirmed by examining synchronized mutant cells that lose viability when SPB duplication is attempted. Spc42p is a phosphoprotein which shows some cell cycle-regulated phosphorylation. Overexpression of Spc42p causes the formation of a disc- or dome-shaped polymer composed of phosphorylated Spc42p, which is attached to the central plaque and associated with the outer nuclear membrane. Taken together, these data suggest that Spc42p forms a polymeric layer at the periphery of the SPB central plaque which has an essential function during SPB duplication and may facilitate attachment of the SPB to the nuclear membrane. 相似文献
12.
13.
The spindle pole body component Spc98p interacts with the gamma-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. 总被引:3,自引:1,他引:2 下载免费PDF全文
S Geissler G Pereira A Spang M Knop S Sous J Kilmartin E Schiebel 《The EMBO journal》1996,15(15):3899-3911
Tub4p is a novel tubulin found in Saccharomyces cerevisiae. It most resembles gamma-tubulin and, like it, is localized to the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC98 as a dosage-dependent suppressor of the conditional lethal tub4-1 allele. SPC98 encodes an SPB component of 98 kDa which is identical to the previously described 90 kDa SPB protein. Strong overexpression of SPC98 is toxic, causing cells to arrest with a large bud, defective microtubule structures, undivided nucleus and replicated DNA. The toxicity of SPC98 overexpression was relieved by co-overexpression of TUB4. Further evidence for an interaction between Tub4p and Spc98p came from the synthetic toxicity of tub4-1 and spc98-1 alleles, the dosage-dependent suppression of spc98-4 by TUB4, the binding of Tub4p to Spc98p in the two-hybrid system and the co-immunoprecipitation of Tub4p and Spc98p. In addition, Spc98-1p is defective in its interaction with Tub4p in the two-hybrid system. We suggest a model in which Tub4p and Spc98p form a complex involved in microtubule organization by the SPB. 相似文献
14.
Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. 总被引:10,自引:1,他引:9 下载免费PDF全文
Previously, we have shown that the yeast gamma-tubulin, Tub4p, forms a 6S complex with the spindle pole body components Spc98p and Spc97p. In this paper we report the purification of the Tub4p complex. It contained one molecule of Spc98p and Spc97p, and two or more molecules of Tub4p, but no other protein. We addressed how the Tub4p complex binds to the yeast microtubule organizing center, the spindle pole body (SPB). Genetic and biochemical data indicate that Spc98p and Spc97p of the Tub4p complex bind to the N-terminal domain of the SPB component Spc110p. Finally, we isolated a complex containing Spc110p, Spc42p, calmodulin and a 35 kDa protein, suggesting that these four proteins interact in the SPB. We discuss in a model, how the N-terminus of Spc110p anchors the Tub4p complex to the SPB and how Spc110p itself is embedded in the SPB. 相似文献
15.
The Saccharomyces cerevisiae spindle pole body (SPB) component Nbp1p is required for SPB membrane insertion and interacts with the integral membrane proteins Ndc1p and Mps2p 下载免费PDF全文
Araki Y Lau CK Maekawa H Jaspersen SL Giddings TH Schiebel E Winey M 《Molecular biology of the cell》2006,17(4):1959-1970
The spindle pole body (SPB) in Saccharomyces cerevisiae functions to nucleate and organize spindle microtubules, and it is embedded in the nuclear envelope throughout the yeast life cycle. However, the mechanism of membrane insertion of the SPB has not been elucidated. Ndc1p is an integral membrane protein that localizes to SPBs, and it is required for insertion of the SPB into the nuclear envelope during SPB duplication. To better understand the function of Ndc1p, we performed a dosage suppressor screen using the ndc1-39 temperature-sensitive allele. We identified an essential SPB component, Nbp1p. NBP1 shows genetic interactions with several SPB genes in addition to NDC1, and two-hybrid analysis revealed that Nbp1p binds to Ndc1p. Furthermore, Nbp1p is in the Mps2p-Bbp1p complex in the SPB. Immunoelectron microscopy confirmed that Nbp1p localizes to the SPB, suggesting a function at this location. Consistent with this hypothesis, nbp1-td (a degron allele) cells fail in SPB duplication upon depletion of Nbp1p. Importantly, these cells exhibit a "dead" SPB phenotype, similar to cells mutant in MPS2, NDC1, or BBP1. These results demonstrate that Nbp1p is a SPB component that acts in SPB duplication at the point of SPB insertion into the nuclear envelope. 相似文献
16.
The initiation of cytokinesis in the fission yeast Schizosaccharomyces pombe is signalled by the septation initiation network (SIN). Signalling originates from the spindle pole body (SPB), where SIN proteins are anchored by a scaffold composed of cdc11p and sid4p. Cdc11p links the other SIN proteins to sid4p and the SPB. Homologues of cdc11p have been identified in Saccharomyes cerevisiae (Nud1p) and human cells (Centriolin). We have defined functional domains of cdc11p by analysis of deletion mutants. We demonstrate that the C-terminal end of cdc11p is necessary for SPB localisation. We also show that the N-terminal domain is necessary and sufficient for signal transduction, since tethering of this domain to the SPB will substitute for cdc11p in SIN function. 相似文献
17.
The ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles. 相似文献
18.
19.
The Saccharomyces cerevisiae spindle pole body (SPB) consists of numerous proteins forming the outer, inner and central plaques. The protein Cnm67 is an important component of the outer plaque. The C-terminus of this protein contains a determinant important for its SPB localization. We identified a protein encoded by YOR129c which interacts with this C-terminus in the two-hybrid system. YOR129c and CNM67 exhibit weak genetic interaction. The double deletion strain yor129cdelta cnm67delta exhibits moderately increased resistance to 0.1M LiCl and hygromycin B compared with the cnm67delta single mutant. We propose that the YOR129c protein is an accessory factor associated with the cytoplasmic face of SPB and plays a role in cation homeostasis and/or multidrug resistance. 相似文献
20.
Miki F Kurabayashi A Tange Y Okazaki K Shimanuki M Niwa O 《Molecular genetics and genomics : MGG》2004,270(6):449-461
In interphase cells of fission yeast, the spindle pole body (SPB) is thought to be connected with chromosomal centromeres by an as yet unknown mechanism that spans the nuclear membrane. To elucidate this mechanism, we performed two-hybrid screens for proteins that interact with Kms1 and Sad1, which are constitutive membrane-bound components of the SPB that interact with each other. Seven and 26 genes were identified whose products potentially interact with Kms1 and Sad1, respectively. With the exception of Dlc1 (a homolog of the 14-kDa dynein light chain), all of the Kms1 interactors also interacted with Sad1. Among the genes identified were the previously known genes rhp9
+/ crb2
+, cut6
+, ags1
+/ mok1
+, gst3
+, kms2
+, and sid4
+. The products of kms2
+
and sid4
+
localize to the SPB. The novel genes were characterized by constructing disruption mutations and by localization of the gene products. Two of them, putative homologues of budding yeast UFE1 (which encodes a t-SNARE) and SFH1 (an essential component of a chromatin-remodeling complex), were essential for viability. Two further genes, which were only conditionally essential, genetically interact with sad1
+
. One of these was named sif1
+ (for Sad1-interacting factor) and is required for proper septum formation at high temperature. Cells in which this gene was overexpressed displayed a wee -like phenotype. The product of the other gene, apm1
+, is very similar to the medium chain of an adaptor protein complex in clathrin-coated vesicles. Apm1 appears to be required for SPB separation and spindle formation, and tended to accumulate at the SPB when it was overproduced. It was functionally distinct from its homologues Apm2 and Apm4. Other novel genes identified in this study included one for a nucleoporin and genes encoding novel membrane-bound proteins that were genetically related to Sad1. We found that none of the newly identified genes tested were necessary for centromere/telomere clustering.Communicated by C. P. HollenbergThe first three authors contributed equally to this work 相似文献