首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Deoxyribonucleic acid (DNA)-less T2 "ghosts" were prepared by osmotic shock and purified by KBr density gradient centrifugation. Escherichia coli B was treated with these ghosts in inorganic salts-glycerol medium to see which features of phage infection could be elicited by ghosts. At a multiplicity that was just sufficient to block induction of beta-galactosidase (EC 3.2.1.23), 89% of the bacteria were killed and the rates of ribonucleic acid (RNA) and DNA synthesis were about 10 to 15% of normal. However, protein synthesis was almost completely blocked but resumed after 30 min. During this period, it was possible to induce messenger RNA (mRNA) from the lactose operon, although this mRNA could not be translated into active beta-galactosidase. These results suggest to us that the viable cells surviving ghost infection synthesize nucleic acids at close to a normal rate but are temporarily blocked in protein synthesis. The continued formation of untranslated host mRNA mimics the pattern of bacterial synthesis just after whole-phage infection, and is consistent with the interpretation that the immediate block in the initiation of host translation by these viruses is due to their attachment.  相似文献   

2.
Regulatory Properties of Acetokinase from Veillonella alcalescens   总被引:1,自引:3,他引:1       下载免费PDF全文
Ghosts of T4 bacteriophage inhibit the uptake of thiomethyl-beta-galactoside (TMG), alpha-methylglucoside, glucose-6-phosphate, and glycerol in Escherichia coli B. The transport of orthonitrophenyl-beta-galactoside (ONPG) is also inhibited to a lesser degree and without alteration of the apparent K(m) of transport. These effects of ghosts parallel those of energy poisons on these systems. However, no one energy poison can produce such pronounced inhibitory effects in all these systems. The effect of the intact phage in these systems was either absent or very slight relative to the ghost. The effect of ghosts on the uptake of TMG was not immediate; at 10 C, no effect of the ghosts was apparent for at least 2 min. This suggests that a step, more temperature dependent than the attachment of the ghost, is necessary for the inhibitory action. The intracellular level of adenosine triphosphate (ATP) in the ghost-infected cells fell to less than 25% of the control value, and the ATP lost from the cell appeared in extracellular medium. Phage, on the other hand, caused no decrease in the intracellular ATP level. This loss of ATP from the cells after ghost infection suggests an alteration of the barrier properties of the membrane so that ATP can leave the cell; however, the accessibility of extracellular ONPG to intracellular beta-galactosidase does not increase. The dissimilarity of the actions of phage and ghosts on all properties examined does not support the model that the initial events in their infections are identical but that the intact phage, unlike the ghost, can provide information for the repair of its effects.  相似文献   

3.
A Shapira  A Kohn 《Cryobiology》1974,11(5):452-464
The damage by freeze-drying to bacteriophage T4 was analysed in order to locate the site and the mechanism of damage. As a result of freeze-drying of bacteriophage T4, its head coat was damaged so as to lead to the loss of the DNA and emptying of the head. The tail assembly was generally undamaged and the freeze-dried phage preserved the biological activities concerned with absorption and injection (inhibition of host colony formation, inhibition of induction of beta-galactosidase, induction of changes in the potassium content in the host bacteria).The 2 mechanisms by which the freeze-drying damages the phage arc: osmotic shock, which occurs mainly during the resuspension of the FD phage, and the drying per se, i.e., the removal of water from the head protein.  相似文献   

4.
Parallel studies have been made of the protein coats of the temperate bacteriophage λ and of a deletion mutant, λ virulent. A new method for preparing ghosts of both phages by the action of Cu++ is described. Protein ghosts of both phages can be dissolved in citrate at pH values below 3, more rapidly in the presence of 8 m urea. Both phages yielded three apparently identical protein components which can be separated by thin-layer gel filtration and thin-layer gel electrophoresis. The protein of molecular weight 47,000 ± 1,500 represents about 55% of the protein of the ghosts and is therefore likely to be the subunit of the head. The other proteins of molecular weight 30,000 ± 1,500 and 16,000 ± 1,500 represent approximately 25% and 20% of the protein, respectively. Amino acid analyses of the ghosts from the two phages have been carried out and show no significant differences. The buoyant density of phage λ virulent is 0.016 g/ml less than that of λ. Since no differences have been found in the protein components of the two phages, this indicates that the virulent mutant contains approximately 16% less deoxyribonucleic acid than the temperate phage.  相似文献   

5.
The method allowing the induction of bacterial mutations affecting Tn9 transposition from the bacteriophage genome to the Escherichia coli chromosome is described. Neither impaired ability of cells to adsorb bacteriophages, nor phage DNA degradation in the mutant cells were observed in the transposition-defective mutants isolated by the method. This led us to the conclusion that the isolated mutants were indeed defective in the transposition of Tn9.  相似文献   

6.
On the internal structure of bacteriophage lambda   总被引:8,自引:0,他引:8       下载免费PDF全文
The structure of bacteriophage lambda has been studied by electron microscopy of negatively stained particles. The phage particles will eject their DNA if they are heated or dialyzed against a chelating agent. The ghost particles, so formed, have a channel running down their tails. Since the channel is not visible in normal particles, the channel may be filled with part of the DNA molecule. Up to 30% of the ghosts contain round objects about half the internal diameter of the head. The round objects, called "cores," have the same buoyant density as the coat protein. The core may be a protein spool about which the phage DNA is wound.  相似文献   

7.
Imamovic L  Muniesa M 《PloS one》2012,7(2):e32393

Background

The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA.

Methodology/Principal Findings

The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction.

Conclusions/Significance

Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains.  相似文献   

8.
Rutberg, Blanka (Karolinska Institutet, Stockholm, Sweden), and Lars Rutberg. Role of superinfecting phage in lysis inhibition with phage T4 in Escherichia coli. J. Bacteriol. 90:891-894. 1965.-The ability of bacteriophage T4 to induce lysis inhibition upon superinfection was investigated after various treatments of the phage. This ability was found not to be a property of the external protein part of the phage, nor was it dependent on the functional and possibly structural integrity of the phage genetic material.  相似文献   

9.
Nuclear disruption after infection of Escherichia coli with a bacteriophage T4 mutant deficient in the ability to induce endonuclease II indicates that either (i) the endonuclease II-catalyzed reaction is not the first step in host deoxyribonucleic acid (DNA) breakdown or (ii) nuclear disruption is independent of nucleolytic cleavage of the host chromosome. M-band analysis demonstrates that the host DNA remains membrane-bound after infection with either an endonuclease II-deficient mutant or T4 phage ghosts.  相似文献   

10.
The affinities of the bacteriophage 434 repressor for its various binding sites depend on the type and/or concentration of monovalent cations. The ability of bacteriophage 434 repressor to govern the lysis-lysogeny decision depends on the DNA binding activities of the phage's cI repressor protein. We wished to determine whether changes in the intracellular ionic environment influence the lysis-lysogeny decision of the bacteriophage lambda(imm434). Our findings show that the ionic composition within bacterial cells varies with the cation concentration in the growth media. When lambda(imm434) lysogens were grown to mid-log or stationary phase and subsequently incubated in media with increasing monovalent salt concentrations, we observed a salt concentration-dependent increase in the frequency of bacteriophage spontaneous induction. We also found that the frequency of spontaneous induction varied with the type of monovalent cation in the medium. The salt-dependent increase in phage production was unaffected by a recA mutation. These findings indicate that the salt-dependent increase in phage production is not caused by activation of the SOS pathway. Instead, our evidence suggests that salt stress induces this lysogenic bacteriophage by interfering with 434 repressor-DNA interactions. We speculate that the salt-dependent increase in spontaneous induction is due to a direct effect on the repressor's affinity for DNA. Regardless of the precise mechanism, our findings demonstrate that salt stress can regulate the phage lysis-lysogeny switch.  相似文献   

11.
Bacteriophage studies with Escherichia coli K-12 (gamma)DR-DS-, a mutant lacking the major known fatty acyl hydrolases (phospholipases), and its wild-type parent showed equivalent phage infection with regard to phage production and time of phage release. Further examination of the DR-DS- mutant, however, revealed that the progeny bacteriophage were released without complete dissolution of the host cell. Prolonged cell integrity of the infected mutant was noted by spectrophotometry and supported by direct microscope examination. The phage release occurred at normal "lysis" time with phage yields comparable to that of the wild-type bacteria. Inner membrane degradation was indicated by the release of beta-galactosidase, a cytoplasmic enzyme, and of trichloracetic acid-precipitable RNA. Thus, outer membrane degradation is required for dissolution of phage-infected cells, and this degradation is at least partly dependent on activation of host phospholipases.  相似文献   

12.
The protein component of the T-even bacteriophage coat which binds the phage-specific dihydropteroyl polyglutamate has been identified as the phage-induced dihydrofolate reductase. Dihydrofolate reductase activity has been found in highly purified preparations of T-even phage ghosts and phage substructures after partial denaturation. The highest specific enzymatic activity was found in purified tail plate preparations, and it was concluded that this enzyme was a structural component of the phage tail plate. Phage viability was directly correlated with the enzymological properties of the phage tail plate dihydrofolate reductase. All reactions catalyzed by this enzyme which changed the oxidation state of the phage dihydrofolate also inactivated the phage. Properties of two T4D dihydrofolate reductase-negative mutants, wh1 and wh11, have been examined. Various lines of evidence support the view that the product of the wh locus of the phage genome is normally incorporated into the phage tail structure. The effects of various dihydrofolate reductase inhibitors on phage assembly in in vitro complementation experiments with various extracts of conditional lethal T4D mutants have been examined. These inhibitors were found to specifically block complementation when added to extracts which did not contain preformed tail plates. If tail plates were present, inhibitors such as aminopterin, did not affect further phage assembly. This specific inhibition of tail plate formation in vitro confirms the analytical and genetic evidence that this phage-induced "early" enzyme is a component of the phage coat.  相似文献   

13.
The population biology of bacterial viruses: why be temperate   总被引:7,自引:0,他引:7  
A model of the interactions between populations of temperate and virulent bacteriophage with sensitive, lysogenic, and resistant bacteria is presented. In the analysis of the properties of this model, particular consideration is given to the conditions under which temperate bacteriophage can become established and will be maintained in bacterial populations. The effects of the presence of resistant bacteria and virulent phage on these "existence" conditions for temperate viruses are considered. It is demonstrated that under broad conditions temperate phage will be maintained in bacterial populations and will coexist with virulent phage. Extrapolating from this formal consideration of the population biology of temperate bacteriophage, a number of hypotheses for the conditions under which temperate, rather than virulent, modes of phage reproduction are to be anticipated and the nature of the selective pressures leading to the evolution and persistence of this "benign" type of bacterial virus are reviewed and critically evaluated. Two hypotheses for the "advantages of temperance" are championed: (1) As a consequence of the allelopathic effects of diffusing phage, in physically structured habitats, lysogenic colonies are able to sequester resources and, in that way, have an advantage when competing with sensitive nonlysogens. (2) Lysogeny is an adaptation for phage to maintain their populations in "hard times," when the host bacterial density oscillates below that necessary for phage to be maintained by lytic infection alone.  相似文献   

14.
The bacteriophage Mu d1(Apr lac cts62 ) obtained from an Escherichia coli double lysogen carrying the defective Mu d1 phage and a Mu-P1 hybrid phage was utilized as a vector for phage mutagenesis in Erwinia carotovora subsp. carotovora. Among ampicillin-resistant transductants. 1.4% were auxotrophs. The synthesis of beta-galactosidase was derepressed upon starvation for histidine in two different his-lac fusion strains.  相似文献   

15.
We recently developed an efficient bacterial expression system for phagemid-coded antigen-binding fragments of antibody (Fabs) without the use of a helper bacteriophage. This system is characterized by an unusually long cultivation at a low temperature and gentle induction of Fab expression without the addition of the inducer isopropyl-β-D-thiogalactopyranoside (IPTG). This method allows for a high yield production of Fabs fused with phage gene III coat protein, even when the protein is defective in its folding ability. With this cultivation procedure, we aimed here at improving the production and selection efficiency of filamentous bacteriophages displaying functional Fabs on their surface (Fab-phages) that have high affinity but low folding ability. The Fab components of the Fab-phages used were clonally related but differed in their affinity and folding ability. The production of the functional Fab-phages was quantitatively evaluated under various culture conditions. With conventional phage particle preparation, the production of functional Fab-phages was significantly biased according to the folding ability of the displayed Fabs, and affinity-based biopanning was therefore unsuccessful. In contrast, with the present procedure employing cultivation at 25 °C for 16 h without IPTG induction, functional Fab-phages were produced without any such dependence on folding ability. With this optimized library, affinity-based biopanning was successful. Especially noteworthy, bead-based biopanning accurately discriminated between high affinity Fab-phages and Fab-phages with low or middling affinity. In obtaining Fab-phages with high affinity but low folding ability, these optimized procedures for both cultivation and selection were essential.  相似文献   

16.
17.
18.
Strains of Escherichia coli K-12 containing the colicin Ib (Col Ib) factor did not produce progeny phage when infected by T5 bacteriophage. The cells were killed but did not lyse. If sodium dodecyl sulfate (SDS) was added to T5-infected E. coli (Col Ib), lysis occurred prematurely, but no phage were produced. SDS had no effect on infected cells that did not contain the Col Ib factor or on uninfected cells with or without the Col Ib factor. Cells that contained a mutant Col Ib factor that allowed phage production were not prematurely lysed after infection in the presence of SDS. When the Col Ib-containing cells were infected, protein and RNA synthesis stopped at about 10 min postinfection, and the cells released abnormal amounts of 32P-containing material, ATP, and beta-galactosidase into the medium. They also became inhibited in their ability to accumulate thiomethyl-beta-D-galactopyranoside and to utilize glycerol. Two alternative hypotheses are presented to explain these results.  相似文献   

19.
The linearly arrayed surface layer proteins found on the mosquito-pathogenic strains ofBacillus sphaericus function as the site of bacteriophage attachment for the ten lytic bacteriophages used in a bacteriophage typing scheme. Attachment to the surface layer proteins was demonstrated by the ability to block bacteriophage binding with antisera and the ability of the purified proteins to neutralize bacteriophage. Bacteriophage-resistant mutants have modified surface proteins that are less able to neutralize bacteriophages than is the protein of the parent strain. No evidence was obtained that sugar residues play a part in bacteriophage attachment. Phage neutralization by surface proteins from strains that do not serve as host to the phage indicates that, although strains in each phage group have a unique surface protein, the proteins do not determine the phage groups.  相似文献   

20.
Protein synthesis in bacteriophage ghost-infected cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Escherichia coli B infected with T4 phage ghosts at 10 mM Mg2+ regains its protein synthesizing activity upon addition of ATP, GTP, and their generator to approximately 2% of the intact exponentially growing cells. In contrast to amino acid incorporation by intact cells, this system is sensitive to EDTA or low Mg2+. On the other hand, this system, differing from the regular cell-free system, does not respond to addition of soluble protein and ribonuclease. The ghost-infected cells were able to synthesize beta-galactosidase upon addition of the inducer isopropyl thiogalactoside. The initial rate of the induction was 2.6% of intact cells. For this induction, the addition of cyclic AMP, amino acids, ATP, GTP, UTP, CTP, and their generator was necessary. The induction of beta-galactosidase in these ghost-infected cells was very sensitive to the addition of EDTA, CaCl2, sulfhydryl blocking reagent, rifampin and chloramphenicol but insensitive to DNA synthesis inhibitors such as nalidixic acid and DNase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号