首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A c-type cytochrome, cytochrome c-552, from a soluble fraction of an extreme thermophile, Thermus thermophilus HB8, was highly purified and its properties investigated. The absorption peaks were at 552, 522, and 417 nm in the reduced form, and at 408 nm in the oxidized form. The isoelectric point was at PH 10.8, the midpoint redox potential was about +0.23 V, and the molecular weight was about 15,000. The cytochrome c-552 was highly thermoresistant. The cytochrome reacted rapidly with pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2], but slowly with bovine cytochrome oxidase [EC 1.9.3.1], yeast cytochrome c peroxidase [EC 1.11.1.5], or Nitrosomonas europaea hydroxylamine-cytochrome c reductase [EC 1.7.3.4].  相似文献   

3.
Soluble cytochrome c-552 was purified from Thiobacillus ferrooxidans to an electrophoretically homogeneous state. The cytochrome showed absorption peaks at 276, 411 and 523 nm in the oxidized form and peaks at 315, 417, 523 and 552 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 13,800 on the basis of the amino acid composition and heme content, and 14,000 from SDS-polyacrylamide gel electrophoresis analysis. Its midpoint redox potential at pH 7.0 was determined to be +0.36 V. The N-terminal amino acid sequence of the cytochrome was determined as follows: A-G-G-A-G-G-P-A-P-Y-R-I-S-?-D-?-M-V-?-S-G-M-P-G-. Ferrocytochrome c-552 was oxidized by the membrane fraction of T. ferrooxidans, and the oxidation rate was more rapid at pH 3.0 than at pH 6.5. Ferricytochrome c-552 was reduced by Fe(II)-cytochrome c oxidoreductase with Fe2+ at pH 3.5, while horse ferricytochrome c was not reduced by the enzyme under the same reaction conditions.  相似文献   

4.
A membrane-bound cytochrome c-552 was isolated and purified from the photosynthetic bacterium Chromatium vinosum by treatment with sodium cholate, sodium deoxycholate and bacterial alkaline protease followed by gel filtration. The purified cytochrome c-552, which may have been modified by the protease treatment, was electrophoretically homogeneous. Its minimal molecular weight was estimated to be 19 and 20 kdaltons, respectively by SDS polyacrylamide gel electrophoresis and by gel filtration on Sephadex G-100. Cytochrome c-552 showed the absorption maxima at 419, 523 and 552 nm in the reduced form. Reduced-minus-oxidized difference millimolar absorption coefficient was 10.6 for the wavelength pair, 552 minus 540 nm. The midpoint potential at pH 8.0 was ?130 mV. The polarity in the amino acid composition of cytochrome c-552 was 40.1% and reflected its hydrophobicity. The solubilized cytochrome c-552 was shown to be a different entity from the soluble flavocytochrome c-552 in several respects.  相似文献   

5.
6.
The complete amino acid sequence of cytochrome c-552 from an extremely thermophilic hydrogen bacterium, Hydrogenobacter thermophilus TK-6 (IAM 12695), was determined. It is a single polypeptide chain of 80 residues, and its molecular weight, including heme, was calculated to be 7,599. The sequence of cytochrome c-552 from H. thermophilus TK-6 closely resembles that of cytochromes c-551 from Pseudomonas species. Moreover, the tertiary structure of Hydrogenobacter cytochrome c-552 is suggested to be similar to that of cytochrome c-551 from Pseudomonas aeruginosa. The sequence similarity between Hydrogenobacter cytochrome c-552 and that of other bacteria physiologically related to H. thermophilus is not high.  相似文献   

7.
8.
9.
The soluble fraction required for the sulfur-oxidizing systemof Thiobacillus thiooxidans was resolved into two componentsthrough ammonium sulfate fractionation, Amberlite CG-50, DEAEcellulose column chromatography and Sephadex gel filtration.Both components (A and B) were indispensable for the sulfur-oxidizingsystem. Component A with a molecular weight of 120,000 is a non-hemeiron protein. The absorption maximum of the oxidized form wasat 410 nm but was shifted to 420 nm by reduction. ComponentB is a new flavoprotein containing non-heme iron. Although thesame absorption change was seen at 410 nm (as with componentA) the shoulder at 485 nm in the oxidized form disappeared uponreduction. The molecular weight of component B was calculatedas 23,000 using the gel nitration method. The sulfur-oxidizing activity of the reconstituted system wasmarkedly inhibited by such metal-chelating agents as EDTA, DDCand o-phenanthroline. Several nucleotides, which are known flavoproteininhibitors, inhibited the sulfur-oxidizing activity. Removalof the Fe in the soluble fraction components by KCN or DDC treatmentdecreased the sulfur-oxidizing activity of the reconstitutedsystem. Based on these evidences we concluded that iron and flavin inthe soluble components may have an important role in the elementalsulfur-oxidizing system of Thiobacillus thiooxidans. (Received May 2, 1975; )  相似文献   

10.
The sulfur-oxidizing system of a strain of Thiobacillus thiooxidanswas obtained in cell-free state. The system is resolved intothree fractions and can be reconstituted from these fractions.Both the soluble and particulate fractions are required forthe oxidation of elementary sulfur. The soluble fraction wasfurther separated into two fractions, the collodion membrane-permeable(S-P)and the impermeable(S-IP). S-P contains a low molecular weight,relatively heat stable substance(s) which is indispensable forthe reconstitution of the sulfur-oxidizing system and was identifiedas a pyridine nucleotide. The function of S-P can be replacedby NAD or NADP, but not by cysteine nor GSH. Oxidation of NADH2 and NADPH2 is catalyzed by the particulatefraction. Oxidation of the latter is much more rapid than thatof the former. Oxidation of NADPH2 as well as sulfur oxidationis inhibited by cyanide, pCMB and CO, the CO-inhibition beingphoto-irreversible. However, strong inhibitors of sulfur oxidationsuch as DDC, 8-hydroxyquinoline and salicylaldoxime have noeffect on the oxidation of NADPH2. The optimum pH values for sulfur and sulfite oxidations by thecell-free extract are shifted to the neutral side in comparisonwith pH values by intact cells. 1V = References(I). 2Partly supported by a grant from the Ministry of Education. (Received April 3, 1969; )  相似文献   

11.
The method of purification up to electrophoretical homogeneity of cytochrome c552 from the phototrophic bacterium Thiocapsa roseopersicina, strain BBS is described. For the cytochrome absorption spectrum the maxima at 417, 523 and 552 nm are characteristic for the reduced state and at 409 nm--for the oxidized state. The molecular weight is equal to 62000. The cytochrome contains two hemes per molecule and consists of two subunits. pI is 4.1; E0' is about 10 mV. Cytochrome c552 is a flavoprotein according to its fluorescence spectrum and subunit structure. T. roseopersicina cytochrome c552 is able to be reduced with sulphide, cysteine and ascorbate as well as with H2 in the presence of hydrogenase from the same bacterium. These data suggest that cytochrome c552 from T. roseopersicina functions in vivo at the initial stage of electron transport from hydrogen and sulphide.  相似文献   

12.
Y Sanbongi  Y Igarashi  T Kodama 《Biochemistry》1989,28(25):9574-9578
The denaturation of the c-type cytochrome of the thermophilic bacterium Hydrogenobacter thermophilus cytochrome c-552 by heat and guanidine hydrochloride was studied by measuring the change in circular dichroic spectra. The melting temperature (T1/2) of cytochrome c-552 in the presence of 1.5 M guanidine hydrochloride was 34 degrees C higher than that of the c-type cytochrome of Pseudomonas aeruginosa cytochrome c-551. Hydrogenobacter cytochrome c-552 is a much more stable protein than cytochrome c-551 of the mesophilic bacterium P. aeruginosa, even though their amino acid sequences are 56% identical and they have numerous other similarities. However, notwithstanding these similarities between the sequences of the cytochromes c-552 and c-551 that were compared, it is very likely that these differences in stability could be due to some heretofore undefined differences in their spatial structures. It has been suggested that alpha-helix structure and electrostatic interaction could be the source of the stable spatial structure of cytochrome c-552.  相似文献   

13.
Cytochrome c-552 (soluble 'cytochrome f') from the unicellular cyanobacterium Synechococcus PCC 6312 (ATCC 27167) was purified and the primary structure determined. The proposed sequence consists of one polypeptide chain of 87 residues. The sequence was determined by a combination of chemical and enzymatic cleavage, manual and automatic sequencing and mass spectroscopy. This is the first amino acid sequence of this cytochrome from a unicellular cyanobacterium to be determined in a study of the variation in primary structure between phylogenetically distant cyanobacteria. The sequence is compared to the primary structures of the cytochrome from filamentous cyanobacteria and from eukaryotic algae. The significance of these sequence comparisons to the current hypotheses concerning the origin of eukaryotic cells and their chloroplasts is discussed.  相似文献   

14.
Characteristics and occurrence of cytochrome c-552 from an aerobic photosynthetic bacterium, Roseobacter denitrificans, were described.Relative molecular mass of the cytrochrome was 13.5 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 15,000 by gel filtration. This cytochrome was a acidic protein having a pI of 5.6 and Em was +215 mV at pH 7.0. Absorption peaks were at 278, 408 and 524 nm in the oxidized form and 416, 523 and 552 nm in the reduced form.Amino acid composition and N-terminal amino acid sequence of cytochrome c-552 determined for 24 residues had low similarities to those of cytochrome c-551 of this bacterium, which is homologous to cytochrome c 2, although the physico-chemical properties of these two cytochromes were similar to each other.Cytochrome c-552 was maximally synthesized in the light under aerobic conditions but not in the dark. The synthesis also occurred in the presence of alternative acceptors such as trimethylamine N-oxide (TMAO) and nitrate under anaerobic conditions. Our results suggest that cytochrome c-552 is involved in TMAO respiration and denitrification in R. denitrificans, although the effect of light remains to be solved.Abbreviations Em Midpoint redox potential - PAGE Polyacrylamide ge electrophoresis - SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMAO Trimethylamine N-oxide  相似文献   

15.
By immersing a few small cellophane bags containing BaCO3 powderin STARKEY's medium, the duration of lag phase in the growthof Thiobacillus thiooxidans is minimized and the yield of cellsis increased ten times that of the previous method. The activitiesof oxidation for sulfur and sulfite change with growth. Sulfiteis oxidized at a comparable rate to that of sulfur oxidationat pH values between 6.0 and 6.5. In the presence of cysteineor glutathione, thiosulfate can be oxidized at a pH above 5.0.At pH values below 4.5, apparent oxidation of thiosulfate andtetrathionate to sulfate is observed. This result is accountedfor by the facts that thiosulfate is decomposed to sulfur andsulfite under the acidic condition at pH values below 4.5, andthat tetrathionate is reduced to thiosulfate enzymatically.In the oxidation of tetrathionate, oxygen uptake begins aftera lag phase, the duration of which depends on the concentrationsof cells and of tetrathionate. Cysteine is oxidized to cystine.The oxidation is strongly inhibited by metal-chelating agents.The cysteine oxidizing activity is, however, quite stable andis not lost by treating cells with organic solvents, sonic oscillation,by heating or lyophilization. 1III=References (11). 2Partly supported by a grant from the Ministry of Education.  相似文献   

16.
Properties of the cell-free extract, prepared from a strainof Thiobacillus thiooxidans by sonic disruption followed byfractionation with centrifugatiori, were investigated with referenceto its sulfite-oxidizing activity. Without the addition of cofactors the particulate fraction(F-P)catalyzed oxidation of sulfite with oxygen or bacterial cytochromec-552 obtained from Pseudomonas stutzeri as electron acceptor.TMPD reduced by ascorbic acid was also oxidized by F-P. Thesoluble fraction(F-S) showed no activity in oxidizing sulfiteand TMPD, but stimulated TMPD oxidation by F-P. Oxygen uptake with either sulfite or TMPD as substrate was inhibitedby KCN, NaN3, CO and c-phenanthroline. CO-Inhibition was reversedby light. Reduction of cytochrome c-552 by sulfite was insensitiveto these agents. Antimycin A markedly inhibited sulfite oxidation with eitheroxygen or cytochrome c-552 as electron acceptor, but was withouteffect on TMPD oxidation. DDC and SAO, both strong inhibitors of sulfur oxidation, didnot affect sulfite and TMPD oxidations. Cytochromes of the a, b and c types were contained in F-P. Thesecytochromes were rapidly reduced when F-P was incubated withsulfite. Cytochrome(s) of the c type was present in F-S, too. 1VI.=References (3) 2Partly supported by a grant from the Ministry of Education 3Present address: Sanyo Women's College, Hatsukaichi, Hiroshima738, Japan 4Present address: Department of Biochemistry, Hiroshima UniversitySchool of Dentistry, Hiroshima 734, Japan (Received May 15, 1970; )  相似文献   

17.
Properties of the oxidation systems of sulfur and sulfite ofa sulfur oxidizing bacterium, Thiobacillus thiooxidans, arecompared by using various inhibitors. Oxidation of sulfur isinhibited by a low concentration of monoiodoacetic acid, NEMand pCMB. Inhibition by pCMB is diminished by the addition ofan equivalent amount of cysteine to that of added pCMB. Althoughinhibition by pCMB is also observed in the oxidation of sulfite,it is not diminished by the addition of excess cysteine andthe extent of inhibition is lower than that in the oxidationof sulfur. Metal chelating agents, such as DDC, 8-hydroxyquinoline, salicylaldoximeand neocuproine have inhibitory effects on the oxidation ofsulfur but do not affect the oxidation of sulfite. Carbon monoxide inhibits the oxidation of sulfur photo-irreversiblyand the oxidation of sulfite photo-reversibly. Alcohols and organic acids, inhibit the oxidation of both sulfurand sulfite. The cell-free extract prepared by sonic disruptionof cells can oxidize sulfite, but not sulfur. The sulfur oxidizingextract can be, however, prepared by disruption under a nitrogenatmosphere. Both the soluble and participate fractions are requiredfor the oxidation of sulfur, while sulfite oxidation is catalyzedby the participate fraction alone. 1Partly supported by a grant from the Ministry of Education.  相似文献   

18.
19.
A soluble cytochrome, cytochrome c-551 was purified from an aerobic photosynthetic bacterium Erythrobacter species strain OCh 114 (ATCC No. 33942) by ammonium sulfate fractionation, ion-exchange chromatography and gel-filtration. The cytochrome had absorption maxima at 277, 410, and 524–525 nm in the oxidized form, and at 415, 522, and 550.5 nm in the reduced form. At 77 K, the -band of the absorption spectrum of the reduced form split in two at 547 and 549 nm. The millimolar absorption coefficient at 550.5 nm was 26.8 mM-1 cm-1 in the reduced form. This cytochrome was an acidic protein with an isoelectric point of 4.9. Its molecular weight was determined to be 15,000 by gel-filtration on Sephadex G-100 and 14,500 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The midpoint potential of this cytochrome was +250 mV at pH 7.0. This cytochrome did not bind CO.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号