首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature and number of physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus have been probed by deleting the genes for cytochromes c1 and b of the cytochrome bc1 complex, alone or in combination with deletion of the gene for cytochrome c2. Deletion of cytochrome c1 renders the organism incapable of photosynthetic growth, regardless of the presence or absence of cytochrome c2, because in the absence of the bc1 complex there is no cyclic electron transfer, nor any alternative source of electrons to rereduce the photochemically oxidized reaction center. While cytochrome c2 is capable of reducing the reaction center, there appears no alternative route for its rereduction other than the bc1 complex. The deletion of cytochromes c1 and c2 reveals previously unrecognized membrane-bound and soluble high potential c-type cytochromes, with Em7 = +312 mV and Em6.5 = +316 mV, respectively. These cytochromes do not donate electrons to the reaction center, and their roles are unknown.  相似文献   

2.
A gene encoding the high-potential iron-sulfur protein (HiPIP) was cloned from the purple photosynthetic bacterium Rubrivivax gelatinosus. An insertional disruption of this gene by a kanamycin resistance cartridge resulted in a significant decrease in the growth rate under photosynthetic growth conditions. Flash-induced kinetic measurements showed that the rate of reduction of the photooxidized reaction center is greatly diminished in the mutant depleted in the HiPIP. On the other hand, mutants depleted in the low- and high-potential cytochromes c(8), the two other soluble electron carriers, which have been shown to donate an electron to the reaction center in Rvi. gelatinosus, showed growth rates similar to those of the wild type under both photosynthetic and respiratory growth conditions. It was concluded that HiPIP is the major physiological electron donor to the reaction center in Rvi. gelatinosus cells grown under photosynthetic conditions.  相似文献   

3.
A photosynthetic reaction center complex has been isolated from the green sulfur bacterium Chlorobium vibrioforme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 18, 15, 9, and 6 kDa. Only the 18-kDa polypeptide is stained with 3,3',5,5'-tetramethylbenzidine, a heme-specific reagent. Oxidized minus reduced difference spectra show the presence of approximately one heme/P840 and the presence of a cytochrome c551. Flash photolysis of P840 was followed by rereduction of P840+ and oxidation of cytochrome c551, both with a biphasic kinetic with t1/2 values of 7 and 50 microseconds. Using oligonucleotide probes derived from an N-terminal amino acid sequence of the 18-kDa polypeptide, a genomic clone was isolated. The sequence of the gene, which we designate cycA, predicts a single heme binding site (Cys-Asn-Lys-Cys-His). The 621-base pair open reading frame encodes an apoprotein of 22,858 Da with three predicted membrane-spanning alpha-helices. No extensive sequence similarity is found to other cytochromes. Northern blotting indicates that the cycA gene is transcribed as a monocistronic mRNA. Southern blotting shows the presence of only one cycA gene in the C. vibrioforme and Chlorobium tepidum genomes. The unique membrane-bound monoheme cytochrome c551 of C. vibriforme is assigned to a new class of c-type cytochromes. The implications for the current view of evolution of photosynthetic reaction center complexes are discussed.  相似文献   

4.
R E Overfield  C A Wraight 《Biochemistry》1980,19(14):3322-3327
The oxidation of cytochrome c2 by photosynthetic reaction center isolated from Rhodopseudomonas sphaeroides and incorporated into unilamellar phosphatidylcholine vesicles was found to be kinetically similar to that observed earlier for reaction centers in low detergent solution [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137-142]. At low ionic strength the kinetics were biphasic. The fast phase indicated the formation of a cytochrome-reaction center complex with an apparent binding constant, KB, of about 10(5) M-1. However, KB decreased dramatically with increasing salt concentration, and no fast oxidation was detectable in 0.1 M NaCl. The slow cytochrome oxidation was first order in both cytochrome and reaction centers and, thus, second order overall. Deviations from theoretical second-order behavior were observed when the rate of the first-order back reaction of the primary photoproducts was significant compared to the cytochrome oxidation. This can cause serious overestimation of the second-order rate constant. The slow oxidation of cytochrome c2 by reaction centers in phosphatidylcholine vesicles exhibited a 40% lower encounter frequency than with the solubilized reaction center. This was attributed to the much lower diffusion coefficient of the reaction center in the vesicle membrane than in solution. No effects of diminished dimensionality were detected with neutral vesicles. An activation energy of 8.0 +/- 0.4 kcal x mol-1 was determined for the slow phase of cytochrome c2 oxidation by reaction centers in solution and in vesicles of several different phosphatidylcholines, including dimyristoylphosphatidylcholine above and below its phase transition temperature. Thus, the physical state of the lipid did not appear to affect any rate-limiting steps leading to cytochrome oxidation. The ionic strength dependence of the slow kinetics of oxidation of cytochromes c and c2 confirmed the electrostatic nature of the cytochrome-reaction center interaction, and the pH dependence indicated the titration of a group or groups, important to this interaction, at pH 9.5.  相似文献   

5.
The purple photosynthetic bacterium Rubrivivax gelatinosus has, at least, four periplasmic electron carriers, i.e., HiPIP, two cytochromes c?with low- and high-midpoint potentials, and cytochrome c? as electron donors to the photochemical reaction center. The quadruple mutant lacking all four electron carrier proteins showed extremely slow photosynthetic growth. During the long-term cultivation of this mutant under photosynthetic conditions, a suppressor strain recovering the wild-type growth level appeared. In the cells of the suppressor strain, we found significant accumulation of a soluble c-type cytochrome that has not been detected in wild-type cells. This cytochrome c has a redox midpoint potential of about +280 mV and could function as an electron donor to the photochemical reaction center in vitro. The amino acid sequence of this cytochrome c was 65% identical to that of the high-potential cytochrome c?of this bacterium. The gene for this cytochrome c was identified as nirM on the basis of its location in the newly identified nir operon, which includes a gene coding cytochrome cd?-type nitrite reductase. Phylogenetic analysis and the well-conserved nir operon gene arrangement suggest that the origin of the three cytochromes c? in this bacterium is NirM. The two other cytochromes c?, of high and low potentials, proposed to be generated by gene duplication from NirM, have evolved to function in distinct pathways.  相似文献   

6.
Components I and II of cytochrome cd1 which had different spectral features were purified from the aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. Component I showed an absorption maxima at 700 and 406 nm in the oxidized form, and at 621, 552.5, 548 and 416 nm in the reduced form. Component II showed an absorption maxima at 635 and 410 nm in the oxidized form and at 628, 552.5, 548 and 417 nm in the reduced form. The relative molecular mass, Mr, of both cytochromes was determined to be 135,000 with two identical subunits. Components I and II showed pI values of 7.6 and 6.8, respectively. The redox potential of hemes ranged from +234 mV to +242 mV, except for the heme d1 of component I (Em7 = +134 mV). Components I and II showed both cytochrome c oxidase and nitrite reductase activities. Cytochrome c oxidase activity was strongly inhibited by a low concentration of nitrite and cyanide. Erythrobacter cytochromes c-551 and c-552 were utilized as electron donors for the cytochrome c oxidase reaction. The high affinity of cytochrome c-552 to component II (Km = 1.27 microM) suggested a physiological significance for this cytochrome. Erythrobacter cytochromes cd1 are unique in their presence in cells grown under aerobic conditions as compared to other bacterial cytochromes cd1 which are formed only under denitrifying conditions.  相似文献   

7.
The electron transport system involved in nitrate reductionand its relationship to photosynthetic cyclic electron transportin a photodenitrifier, Rhodopseudomonas sphaeroides forma sp.denitrificans, were studied. Nitrate oxidized only b-type cytochromein the presence of cyanide, which inhibits nitrite reductase.Heptylhydroxyquinoline-N-oxide (HOQNO) inhibited the oxidationof b-type cytochrome by nitrate, but not the oxidation of b-and c-type cytochrome by nitrite. The inhibition by HOQNO wasovercome by phenazine methosulfate (PMS). Absorption changesof b-type cytochrome induced by illumination were in just theopposite directions for oxygen- and nitrate-oxidized cells;the cytochrome was reduced in oxygen-oxidized cells and oxidizedin nitrate-oxidized cells. Antimycin enhanced the reductionand inhibited the oxidation, but had no inhibitory effect onthe oxidation of b-type cytochrome by nitrate. Dithionite-reducedminus ferricyanide-oxidized difference spectra of cells at 77?Kshowed two b-type cytochrome components with a bands at 556.5and 562 nm. The proportion of the b-562 component decreasedin cells grown under denitrifying conditions. It was concludedthat a b-type cytochrome is involved in the nitrate reduction.The b-type cytochrome was presumed to be an alternative to thecytochrome b in the photosynthetic cyclic electron transport. 1 Present address: Japanese Red Cross Tokyo-to Komagome BloodCenter, Komagome 2-2-2, Toshima-ku, Tokyo 170, Japan. (Received August 13, 1981; Accepted December 5, 1981)  相似文献   

8.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromotophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

9.
N Kusumoto  P Sétif  K Brettel  D Seo  H Sakurai 《Biochemistry》1999,38(37):12124-12137
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria.  相似文献   

10.
In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c(1) and c(2) have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc(1) complex in purple bacteria usually report only the sum cyt c(1) + cyt c(2) kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c(1) and c(2) in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c(1) and c(2) are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c(1) oxidation measured with the DW method which were faster than those determined by the LS method (half-time of approximately 120 micros vs half-time of approximately 235 micros, in the presence of antimycin). In addition, the LS approach revealed a delay of approximately 50 micros in the kinetics of cyt c(1) oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c(1) after light activation of the photosynthetic reaction center, especially the dissociation of cyt c(2) from the reaction center. We also found that kinetics of both cyt c(1) and c(2) measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c(1) and c(2), and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc(1) turnover in situ.  相似文献   

11.
In several strains of the photosynthetic bacterium Rubrivivax gelatinosus, the synthesis of a high midpoint potential cytochrome is enhanced 4-6-fold in dark aerobically grown cells compared with anaerobic photosynthetic growth. This observation explains the conflicting reports in the literature concerning the cytochrome c content for this species. This cytochrome was isolated and characterized in detail from Rubrivivax gelatinosus strain IL144. The redox midpoint potential of this cytochrome is +300 mV at pH 7. Its molecular mass, 9470 kDa, and its amino acid sequence, deduced from gene sequencing, support its placement in the cytochrome c8 family. The ratio of this cytochrome to reaction center lies between 0.8 and 1 for cells of Rvi. gelatinosus grown under dark aerobic conditions. Analysis of light-induced absorption changes shows that this high-potential cytochrome c8 can act in vivo as efficient electron donor to the photooxidized high-potential heme of the Rvi. gelatinosus reaction center.  相似文献   

12.
William W. Parson 《BBA》1969,189(3):397-403
A single, 20-nsec actinic flash oxidizes all of the P870 in Chromatium chromatophores, but only about one half of the cytochrome C422. A second flash, 1–10 msec later, oxidizes most of the remaining cytochrome. The cytochromes which undergo oxidation on the first and second flashes are indistinguishable with respect to their absorption spectra, their kinetics of oxidation and reduction, and their response to N-methylphenazonium methosulfate (PMS) or continuous actinic illumination. The effect of PMS is to increase the total amount of cytochrome C422 which is in the reduced form in the dark, and which is available for photooxidation. The conclusion is that each P870 reaction center is responsible for the oxidation of two C422 hemes.  相似文献   

13.
S E Lang  F E Jenney  Jr    F Daldal 《Journal of bacteriology》1996,178(17):5279-5290
While searching for components of the soluble electron carrier (cytochrome c2)-independent photosynthetic (Ps) growth pathway in Rhodobacter capsulatus, a Ps- mutant (FJM13) was isolated from a Ps+ cytochrome c2-strain. This mutant could be complemented to Ps+ growth by cycA encoding the soluble cytochrome c2 but was unable to produce several c-type cytochromes. Only cytochrome c1 of the cytochrome bc1 complex was present in FJM13 cells grown on enriched medium, while cells grown on minimal medium contained at various levels all c-type cytochromes, including the membrane-bound electron carrier cytochrome cy. Complementation of FJM13 by a chromosomal library lacking cycA yielded a DNA fragment which also complemented a previously described Ps- mutant, MT113, known to lack all c-type cytochromes. Deletion and DNA sequence analyses revealed an open reading frame homologous to cycH, involved in cytochrome c biogenesis. The cycH gene product (CycH) is predicted to be a bipartite protein with membrane-associated amino-terminal (CycH1) and periplasmic carboxyl-terminal (CycH2) subdomains. Mutations eliminating CyCH drastically decrease the production or all known c-type cytochromes. However, mutations truncating only its CycH2 subdomain always produce cytochrome c1 and affect the presence of other cytochromes to different degrees in a growth medium-dependent manner. Thus, the subdomain CycH1 is sufficient for the proper maturation of cytochrome c1 which is the only known c-type cytochrome anchored to the cytoplasmic membrane by its carboxyl terminus, while CycH2 is required for efficient biogenesis of other c-type cytochromes. These findings demonstrate that the two subdomains of CycH play different roles in the biogenesis of topologically distinct c-type cytochromes and reconcile the apparently conflicting data previously obtained for other species.  相似文献   

14.
Bradyrhizobium japonicum utilizes cytochrome cbb 3 oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c 550, the electron donor to the Cu-containing nitrite reductase, reduces cbb 3 expression. In order to establish the role of c 550 in electron transport to the cbb 3 oxidase, in this work, we have analyzed cbb 3 expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP '–' lacZ fusion. Similarly, cbb 3 oxidase was expressed very weakly in a napC mutant lacking the c -type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb 3 expression. In fact, levels of fixP '–' lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.  相似文献   

15.
An aerobic photosynthetic bacterium, Erythrobacter sp. strainOCh 114, was capable of growth under anaerobic conditions inthe dark with nitrate as a terminal electron acceptor. The optimalnitrate concentration was about 6 mM for anaerobic growth, althougha wide range of concentrations from 1 to 400 mM were effective.A large amount of N2O gas was released during this anaerobicgrowth, indicating a denitrifying activity in this bacterium.Light had no stimulating or inhibiting effect on the rates ofanaerobic growth and gas release. The enzymes responsible forthe denitrifying activity, dissimilatory nitrate and nitritereductases, were present in aerobically grown cells. (Received February 19, 1988; Accepted May 16, 1988)  相似文献   

16.
1. Electron-transport particles derived from Escherichia coli grown aerobically contain three b-type cytochromes with mid-point oxidation-reduction potentials at pH7 of +260mV, +80mV and -50mV, with n=1 for each. The variation of these values with pH was determined. 2. E. coli develops a different set of b-type cytochromes when grown anaerobically on glycerol with fumarate or nitrate as terminal electron acceptor. Electron-transport particles of fumarate-grown cells contain b-type cytochromes with mid-point potentials at pH7 of +140mV and +250mV (n=1). These two cytochromes are also present in cells grown with nitrate as terminal acceptor, where an additional cytochrome b with a mid-point potential of +10mV (n=1) is developed. 3. The wavelengths of the alpha-absorption-band maxima of the b-type cytochromes at 77K were: (a) for aerobically grown cells, cytochrome b (E(m7) +260mV), 556nm and 563nm, cytochrome b (E(m7) +80mV), 556nm and cytochrome b (E(m7)-50mV), 558nm; (b) for anaerobically grown cells, cytochrome b (E(m7) +250mV), 558nm, cytochrome b (E(m7) +40mV), 555nm and cytochrome b (E(m7) +10mV), 556nm. 4. Cytochrome d was found to have a mid-point potential at pH7 of +280mV (n=1). 5. Cytochrome a(1) was resolved as two components of equal magnitude with mid-point potentials of +260mV and +160mV (n=1). 6. Redox titrations performed in the presence of CO showed that one of the b-type cytochromes in the aerobically grown cultures was reduced, even at the upper limits of our range of electrode potentials (above +400mV). Cytochrome d was also not oxidizable in the presence of CO. Neither of the cytochromes a(1) was affected by the presence of CO.  相似文献   

17.
The kinetics of light-driven electron flow and the nature of redox centers at apparent photosynthetic membrane growth initiation sites in Rhodopseudomans sphaeroides were compared to those of intracytoplasmic photosynthetic membranes. In sucrose gradients, these membrane growth sites sediment more slowly than intracytoplasmic membrane-derived chromatophores and form an upper pigmented band. Cytochromes c1, c2, b561, and b566 were demonstrated in the upper fraction by redox potentiometry; c-type cytochromes were also detected electrophoretically. Signals characteristic of light-induced reaction center bacteriochlorophyll triplet and photooxidized reaction center bacteriochlorophyll dimer states were observed by EPR spectroscopy but the Rieske iron-sulfur signal of the ubiquinol-cytochrome c2 oxidoreductase was present at a 3-fold reduced level on a reaction center basis in comparison to chromatophores. Flash-induced absorbance measurements of the upper pigmented fraction demonstrated reaction center primary and secondary semiquinone anion acceptor signals, but cytochrome b561 photoreduction and cytochrome c1/c2 reactions occurred at slow rates. This fraction was enriched approximately 2- and 4-fold in total b- and c-type cytochromes, respectively, per reaction center over chromatophores, but photoreducible b-type cytochrome was lower. Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low. Overall, the results suggest that complete cycles of rapid, light-driven electron flow do not occur merely by introduction of newly synthesized reaction centers into respiratory membrane, but that subsequent synthesis and assembly of appropriate components of the ubiquinol-cytochrome c2 oxidoreductase is required.  相似文献   

18.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction.  相似文献   

19.
1. The split-beam spectrophotometer was used to monitor changes in the steady state of cytochrome c and cytochromes a+a(3) during pressurization in pure oxygen. 2. High-pressure oxygen was found to cause oxidation of cytochrome c in rat-liver mitochondria, and of cytochromes a+a(3) at low pH. 3. No difference in these effects was found when various substrates were metabolized. 4. Lowering of pH markedly potentiated the high-pressure effect on the cytochromes. 5. Increased temperature and pressure hastened the reaction to high-pressure oxygen. 6. The oxidation of the cytochromes occurs on the substrate side of cytochrome c, probably at the dehydrogenase level, and the time-course of the reaction is compared with effects of oxygen toxicity in vivo.  相似文献   

20.
1. A simple spectrophotometric method is described for the measurement of various haemoproteins in extracts of photosynthetic and non-photosynthetic bacteria. The method is based on measurements of difference spectra at the Soret maxima. 2. In photosynthetic bacteria of the Athiorhodaceae group the concentration of carbon monoxide-binding haemoprotein and of cytochromes of the b and c types is two to three times as high in anaerobically grown cells as in those grown aerobically. 3. During the adaptation of Rhodopseudomonas spheroides 8253 to form photosynthetic pigments the concentration of each of these haemoproteins increases in parallel with that of the bacteriochlorophyll. 4. The carbon monoxide-binding haemoprotein in aerobically grown Rps. spheroides 8253, in contrast with anaerobically grown cells, is predominantly in the particulate fraction of extracts prepared by ultrasonic vibration. The b- and c-type cytochromes are approximately equally distributed between each fraction in extracts from both types of cell. 5. Extracts of Micrococcus denitrificans grown anaerobically on nitrate contain more cytochromes of the b and c types, as well as of the carbon monoxide-binding pigment, than do those from aerobically grown cells. 6. The activity of ferrochelatase in both Rps. spheroides 8253 and M. denitrificans was similar in extracts from cells grown aerobically and anaerobically, though the haemoprotein content was higher under the latter conditions. Coproporphyrinogen oxidative decarboxylase could not be demonstrated in cell-free extracts of either organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号