首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta-galactosidase gene from the chromosome of Streptococcus thermophilus, strain 6 kb, has been cloned on a vector plasmid pBR322. The corresponding gene has been found to be located on the Pst1 DNA fragment. The restriction map of this 6 kb fragment has been constructed. The shortening of the DNA fragment carrying the beta-galactosidase gene has been achieved by digestion of the recombinant derivative of pBR322 by the restriction endonuclease Sau3A under the conditions of incomplete hydrolysis. The obtained fragments have been cloned into the BamHI site in the berepliconed shuttle vector pCB20 for grampositive and gramnegative bacteria. The obtained recombinant plasmids contained the beta-galactosidase gene in the inserted fragments of different length. Expression of the cloned beta-galactosidase gene in Escherichia coli and Bacillus subtilis cells has been studied.  相似文献   

2.
3.
The ability of industrial strains of mesophylic Streptococcus diacetylactis to synthesize the enzyme beta-galactosidase has been studied. Among the 22 studied strains 8 were found to synthesize the enzyme. Plasmid DNA was isolated from the Streptococcus diacetylactis strain 144 possessing the highest level of beta-galactosidase activity. The cells of the strain harbour the 35, 40 and 60 kb plasmids. The alpha-galactosidase genes from this strain was cloned in Escherichia coli cells. The gene is located on the BglIII DNA fragment of the total plasmid DNA from Streptococcus diacetylactis the size of 2.8 kb. Following the Sau3A restriction endonuclease digestion the gene was subcloned on a birepliconed vector plasmid pCB20. The latter is capable of replication in the Gram-negative as well as Gram-positive microorganisms. The pCB20 derivatives carrying the different length fragments with the beta-galactosidase gene were isolated. DNA of an obtained plasmid was used for transformation of Streptococcus diacetylactis cells. The presence of the recombinant plasmid in streptococcus strain 144 results in the 1.8 fold increase in beta-galactosidase production.  相似文献   

4.
5.
The recombinant shuttle vector pSV2gpt was introduced into V79 Chinese hamster cells, and stable transformants expressing the Escherichia coli gpt gene were selected. Two transformants carrying tandem duplications of the plasmid at a single site were identified and fused to simian COS-1 cells. Plasmid DNA recovered from the heterokaryons was used to transform a Gpt- derivative of E. coli HB101, and the relative frequency of plasmids carrying a mutation in the gpt gene was determined. The high frequency of Gpt- plasmids (ca. 1%) was similar to that observed when plasmid was recovered from COS-1 cells which had been transfected with pSV2gpt. Most of the mutant plasmids had rearrangements in the region containing the gpt gene.  相似文献   

6.
Shuttle cloning vectors for the cyanobacterium Anacystis nidulans.   总被引:13,自引:6,他引:7       下载免费PDF全文
Hybrid plasmids capable of acting as shuttle cloning vectors in Escherichia coli and the cyanobacterium Anacystis nidulans R2 were constructed by in vitro ligation. DNA from the small endogenous plasmid of A. nidulans was combined with two E. coli vectors, pBR325 and pDPL13, to create vectors containing either two selectable antibiotic resistance markers or a single marker linked to a flexible multisite polylinker. Nonessential DNA was deleted from the polylinker containing plasmid pPLAN B2 to produce a small shuttle vector carrying part of the polylinker (pCB4). The two polylinker-containing shuttle vectors, pPLAN B2 and pCB4, transform both E. coli and A. nidulans efficiently and provide seven and five unique restriction enzyme sites, respectively, for the insertion of a variety of DNA fragments. The hybrid plasmid derived from pBR325 (pECAN1) also transforms both E. coli and A. nidulans, although at a lower frequency, and contains two unique restriction enzyme sites.  相似文献   

7.
J Ferguson  J C Groppe  S I Reed 《Gene》1981,16(1-3):191-197
We have constructed three new subcloning plasmid vectors, pRC1, pRC2, and pRC3, derived from pKC7, which allow the rapid, single-step subcloning of yeast genes. Subcloning with these vectors utilizes a partial digestion with Sau3A to generate a quasi-random set of DNA fragments from the original plasmid. All three vectors contain a kanamycin resistance gene. Therefore, if the original cloned yeast DNA fragment is present in a vector that does not specify kanamycin resistance, the subclone pool can be propagated in Escherichia coli in the presence of kanamycin to select against parent plasmids that escaped restriction by Sau3A. Selection by complementation in yeast yields a collection of plasmids with smaller yeast DNA inserts containing the gene of interest. In the vectors pRC2 and pRC3, constructed from pRC1, the unique BamHI site is located within an intact tetracycline resistance gene, thus making it possible to screen bacterial transformants for those containing recombinant plasmid molecules. Vectors pRC2 and pRC3 also contain the yeast 2 micrometers DNA replication origin, and thus are more stable than plasmids carrying only the TRP1-associated replicator (ars1).  相似文献   

8.
We constructed a new type of cloning vector, pERISH2, that transforms Escherichia coli HB101 only when a foreign DNA fragment is ligated into the cloning site of the plasmid vector. Plasmid pERISH2 carries the rcsB gene which is derived from the chromosome of E. coli HB101 and is involved in the regulation of colanic acid production. When E. coli HB101 is transformed by this vector carrying the intact rcsB gene, the gene product RcsB blocks bacterial growth. However, if the rcsB gene is inactivated by the insertion of a foreign DNA fragment, this recombinant plasmid no longer inhibits the growth of E. coli HB101. Although E. coli HB101 is not stably transformed by pERISH2, E. coli K-12 strains such as JM109 and C600 can harbor this vector. Therefore, pERISH2 can be amplified in JM109 and be prepared from this strain in a large quantity using conventional methods. A chromosomal gene library of Klebsiella pneumoniae is constructed easily and efficiently by the utilization of this new cloning vector.  相似文献   

9.
Low copy number vector plasmid pCT571 was constructed to clone Bacillus subtilis genomic fragments in Escherichia coli. pCT571 confers KmR, TcR and CmR in E. coli and CmR in B. subtilis. It has unique restriction sites within the KmR and TcR markers to allow screening for recombinant plasmids by insertional inactivation of these genes. It contains the pSC101 replicon and replicates normally at six to eight copies per chromosome equivalent in E. coli. It also contains oriVRK2, which when supplied with the product of the trfA gene of RK2 in trans, allows pCT571 to replicate at 35-40 copies per chromosome equivalent. A B. subtilis gene bank was created by cloning partially Sau3A-digested and size-fractionated fragments of B. subtilis chromosomal DNA into the BamHI site of pCT571. DNA from 1097 KmR TcS transformants was extracted and analysed electrophoretically as supercoiled DNA and after digesting with EcoRI or EcoRI and SalI. Approximately 1000 hybrid plasmids were found with reasonably sized B. subtilis fragments. The mean size of the inserts in pCT571 is 8 kb, ranging from 4 to 20 kb in different plasmids. The gene bank covers most of the B. subtilis chromosome, as demonstrated by the results of screening the gene bank for selectable nutritional markers in E. coli and B. subtilis. Hybrid plasmids which complement E. coli mutants for arg, his, lys, met, pdx, pyr and thr markers were identified from the gene bank. In B. subtilis the presence of argC, cysA, dal, hisA, ilvA, leuA, lys, metB, metC, phe, purA, purB, thr and trpC was established by transformation experiments. The effects of copy number on cloning and long-term maintenance in the bacterial strains were also investigated. At high copy number some hybrid plasmids cannot be maintained at all, while others show an increased rate of structural deletions and rearrangements.  相似文献   

10.
The ability of the industrial strains of Streptococcus lactis to synthesize the enzyme beta-galactosidase was studied. Five strains among sixteen were found to produce high levels of the enzyme. The beta-galactosidase gene in the most active strain Streptococcus lactis 111 was shown to be located on the 50 kb conjugative plasmid. The plasmid was transferred by conjugation into Streptococcus thermophilus cells and subsequently the gene for beta-galactosidase was studied in transconjugants. The beta-galactosidase gene from Streptococcus lactis 111 was subcloned in Escherichia coli cells on the plasmid pBR322. The gene was localized on the 4.8 kb BgIII fragment of DNA. Following the restriction of DNA by the Sau3A the gene was subcloned on the birepliconed plasmid vector pCB20 capable of replication in the Gram-negative as well as Gram-positive microorganisms. The recombinant derivatives of pCB20 were isolated that carry the beta-galactosidase gene on the DNA fragments of different size.  相似文献   

11.
The gene encoding beta-1,4-glucanase in Bacillus subtilis DLG was cloned into both Escherichia coli C600SF8 and B. subtilis PSL1, which does not naturally produce beta-1,4-glucanase, with the shuttle vector pPL1202. This enzyme is capable of degrading both carboxymethyl cellulose and trinitrophenyl carboxymethyl cellulose, but not more crystalline cellulosic substrates (L. M. Robson and G. H. Chambliss, Appl. Environ. Microbiol. 47:1039-1046, 1984). The beta-1,4-glucanase gene was localized to a 2-kilobase (kb) EcoRI-HindIII fragment contained within a 3-kb EcoRI chromosomal DNA fragment of B. subtilis DLG. Recombinant plasmids pLG4000, pLG4001a, pLG4001b, and pLG4002, carrying this 2-kb DNA fragment, were stably maintained in both hosts, and the beta-1,4-glucanase gene was expressed in both. The 3-kb EcoRI fragment apparently contained the beta-1,4-glucanase gene promoter, since transformed strains of B. subtilis PSL1 produced the enzyme in the same temporal fashion as the natural host B. subtilis DLG. B. subtilis DLG produced a 35,200-dalton exocellular beta-1,4-glucanase; intracellular beta-1,4-glucanase was undetectable. E. coli C600SF8 transformants carrying any of the four recombinant plasmids produced two active forms of beta-1,4-glucanase, an intracellular form (51,000 +/- 900 daltons) and a cell-associated form (39,000 +/- 400 daltons). Free exocellular enzyme was negligible. In contrast, B. subtilis PSL1 transformed with recombinant plasmid pLG4001b produced three distinct sizes of active exocellular beta-1,4-glucanase: approximately 36,000, approximately 35,200, and approximately 33,500 daltons. Additionally, B. subtilis PSL1(pLG4001b) transformants contained a small amount (5% or less) of active intracellular beta-1,4-glucanase of three distinct sizes: approximately 50,500, approximately 38,500 and approximately 36,000 daltons. The largest form of beta-1,4-glucanase seen in both transformants may be the primary, unprocessed translation product of the gene.  相似文献   

12.
A Scordaki  C Drainas 《Plasmid》1990,23(1):59-66
Plasmid pZMO3 of Zymomonas mobilis strain ATCC 10988 was found to be nonhomologous either to chromosomal DNA or to any other plasmids of the strains ATCC 10988, NCIB 11163, and CP4. It contained single sites for the restriction endonucleases SphI, BglI, and HindIII, as well as at least four sites for Sau3A. Its origin of replication is located within the 1.54-kb Sau3A fragment as it was found that only the recombinant plasmid pDS3154, which contained this fragment, showed vectorial incompatibility with the native pZMO3 plasmid. The stability of pZMO3 may be controlled by partitioning sequences located in the 0.64-kb Sau3A fragment. Z. mobilis isolates, which had lost plasmid pZMO3, were successfully isolated.  相似文献   

13.
L T Stauffer  M D Plamann  G V Stauffer 《Gene》1986,44(2-3):219-226
The glycine-cleavage enzyme system of Escherichia coli has been cloned in the cosmid vector pMF7. The recombinant plasmid, designated pGS64, carries two 19.4-kb EcoRI insert fragments. One of these fragments, which carries the gcv system, was subcloned from plasmid pGS64 into the plasmid vectors pACYC184 and pSC101 (creating plasmids pGS96 and pGS97, respectively). Plasmid pGS97, but not pGS96, complements a gcv mutant on glycine-supplemented plates. Enzyme assays, however, verified that both plasmids carry an inducible gcv system. The location of the gcv system in plasmid pGS97 was determined by Tn5 insertional inactivation. Subcloning experiments identified the region on the 19.4-kb fragment that inhibits growth in strains transformed with plasmid pGS96 and a region that is possibly involved in negative regulation of the gcv system.  相似文献   

14.
Sixteen independent Azorhizobium sesbaniae ORS571 vector insertion (Vi) mutants defective in ammonium assimilation (Asm-) were selected; genomic DNA sequences flanking the insertion endpoints were cloned directly. Resulting recombinant plasmids were used to identify, by hybridization, corresponding wild-type DNA sequences from an A. sesbaniae lambda EMBL3 genomic library (lambda Asm phages). All 16 Asm- Vi mutants physically mapped to a single genomic locus. Plasmid subclones of recombinant phage lambda Asm152 were able to complement both Escherichia coli gltB and A. sesbaniae Asm- Vi mutants; NADPH-glutamate synthase activity was detected in all such strains complemented to Asm+. Heterologous and homologous complementations required both A. sesbaniae gltA+ and (inferred) gltB+ genes. Eleven A. sesbaniae Asm- Vi mutants mapped to a 4-kilobase-pair (kbp) DNA region that exhibited homology with Bacillus subtilis gltA+. In E. coli maxicell labeling experiments, this 4-kbp DNA region encoded a 165-kilodalton polypeptide that was inferred to be the product of the A. sesbaniae gltA+ gene (glutaminase NADPH-dependent L-glutamate synthase subunit). Site-directed Tn5-lacZ mutagenesis of a glt plasmid subclone identified a region that bisected this locus into (at least) two cistrons. Because the remaining five A. sesbaniae Asm- mutants mapped to a 1.5-kbp region adjacent to gltA+, these mutants probably define a single gltB+ gene (glutamate dehydrogenase NADPH-dependent L-glutamate synthase subunit); this region did not exhibit homology with the B. subtilis gltB+ gene.  相似文献   

15.
Two hybrid plasmids capable of acting as shuttle cloning vectors inAnacystis nidulans andBacillus subtilis were constructed by in vitro ligation. One construct, pMG202, consists of theB. subtilis vector pNN101 and the endogenous cyanobacterial plasmid pUH24. This 14.6 kb plasmid confers chloramphenicol resistance in both hosts and tetracycline resistance inB. subtilis. A second vector, pMG101, consists of pNN101 linked to theA. nidulans-Escherichia coli chimeric plasmid pCB4 and is 12.9 kb in size. The pCB4 portion of the vector enables pMG101 to replicate in the third host,E. coli, and confers ampicillin resistance in this bacterium as well as inA. nidulans. Both plasmids possess identical uniqueStu I sites which permit insertional inactivation of the chloramphenicol resistance gene; and, in addition, identical uniqueXho I sites are present on both vectors. Each vector also has a third unique site:Sma I on pMG101 andXba I on pMG202.  相似文献   

16.
From a partial Sau3A gene library of Bacillus subtilis chromosomal DNA in the expression plasmid pRK9, four hybrid plasmids were isolated carrying overlapping segments of the argA-argF-cpa cluster. The complementation patterns within Escherichia coli arginine auxotrophs of these hybrids and deletion derivatives provided the gene order argC-argA-argE-argB-argD-cpa-argF.  相似文献   

17.
A gene of Staphylococcus aureus PS47 encoding lytic activity was cloned and expressed in Escherichia coli. Deletion analysis of a recombinant plasmid carrying a 7.4-kilobase-pair fragment (kbp) of S. aureus DNA suggested that the gene was located within a 2.5-kbp EcoRI-XbaI fragment. Analysis of extracts of E. coli harboring recombinant plasmids on denaturing polyacrylamide gels containing purified cell walls of S. aureus showed a clearing zone by a polypeptide of apparent Mr 23,000. The release of dinitrophenylalanine but not reducing groups from purified cell walls by a cell extract of recombinant E. coli suggested that we had cloned an N-acetylmuramyl-L-alanine amidase.  相似文献   

18.
19.
H Poth  P Youngman 《Gene》1988,73(1):215-226
A new cloning system for Bacillus subtilis was devised which makes use of a combination of Tn917-containing phage SP beta derivatives and Tn917-containing Escherichia coli-B. subtilis shuttle plasmids. This system allows the initial cloning of genes in single copy, via 'prophage transformation', with a selection for complementation of mutational defects in B. subtilis hosts and permits subsequent transfer of the cloned material by homologous recombination to low-copy and high-copy vectors that replicate in both B. subtilis and E. coli. Because cloned sequences are adjacent to pB322-derived DNA in the recombinant phages, inserts can also be 'rescued' directly from the phage DNA after digestion with appropriate restriction enzymes, circularization of the fragments by ligation and transformation of an E. coli recipient. Two genomic libraries of B. subtilis chromosomal Sau3A-generated partial-digest fragments in the size ranges of 5-8 kb and 8-10 kb were constructed and screened for the complementation of mutations aroI906, cysA14, dal-1, glyB133, metC3, purA16, purB33, thrA5, trpC2 and recE4. In all cases, specialized transducing phages carrying inserts that complemented the selected markers were recovered. Inserts complementing the dal-1 and trpC2 mutations could be transferred from recombinant phages to Tn917-containing plasmids by homologous recombination without in vitro subcloning. Another insert complementing the purB33 mutation was rescued directly into E. coli from a recombinant phage DNA.  相似文献   

20.
A new plasmid, pSP2, was constructed as a cloning vector for use in Streptococcus pneumoniae. It allows direct selection of recombinant plasmids, even for DNA fragments not homologous to the S. pneumoniae chromosome, as based on the failure to maintain long inverted repeats (LIRs) hyphen-free in bacterial plasmids. Plasmid pSP2 contains a 1.4-kb BamHI fragment ("hyphen") flanked by 1.9-kb LIRs. The removal of the 1.4-kb BamHI fragment followed by ligation creates a plasmid containing a 1.9-kb insert-free LIR; plasmids with such non-hyphenated LIRs were not established when transferred into S. pneumoniae. Replacement of the original 1.4-kb insert by other restriction fragments restored plasmid viability. Investigation of plasmid transfer by transformation suggests that intrastrand synapsis between the LIRs could occur, thus facilitating plasmid establishment (a process we call self-facilitation). Such an intrastrand synapsis could also account for rare occurrences of insert-inversion noticed upon transfer as well as for the formation of palindrome-deleted derivatives at low frequency. Plasmid pSP2 carries two selectable genes, tet and ermC, and can be used for cloning of fragments produced by a variety of restriction enzymes (BamHI, Bg/II, Bc/I or Sau3A, and Sa/I or XhoI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号