首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Diaphragm capillarity and oxidative capacity during postnatal development.   总被引:1,自引:0,他引:1  
In the cat diaphragm, fiber capillarity, cross-sectional area, and succinate dehydrogenase (SDH) activity were measured across the first 6 wk of postnatal development. Fibers were classified as type I, IIa, IIb, or IIc on the basis of staining for myofibrillar adenosinetriphosphatase (ATPase). Capillaries were identified in sections stained for ATPase at pH 4.2. Fiber cross-sectional areas and SDH activities were quantified using an image-processing system. During postnatal development, the proportions of type I fibers increased while type II fibers decreased. At birth, all type II fibers were IIc. From the 1st to the 2nd postnatal wk, the proportion of type IIc fibers decreased while the numbers of IIa and IIb increased. Thereafter the proportion of type IIb fibers continued to increase while the number of IIa steadily declined. At birth, capillarity, cross-sectional areas, and SDH activities of type I and II fibers were low compared with other postnatal age groups. Fiber cross-sectional areas increased progressively with age. The number of capillaries surrounding type I and II fibers increased markedly by the 2nd wk and then continued to increase at a slower rate. The number of capillaries per fiber area reached a peak by the 2nd wk and then declined as fiber cross-sectional area increased. Postnatal changes in capillarity depended on fiber type, being greatest in IIb. SDH activities of type I and II fibers were initially low during the first 2 postnatal wk and then peaked by the 3rd wk. After the 6th wk, fiber SDH activities decreased to adult values. Among the type II fibers, IIb showed the greatest change in SDH activity during early postnatal development.  相似文献   

3.
The purpose of the present study was to investigate the effect of short-term resistance training and detraining on shot put throwing performance. Eleven young healthy subjects with basic shot put skills participated in 14 weeks of resistance training, which was followed by 4 weeks of detraining. Shot put performance in four field tests was measured before (T1) and after (T2) resistance training and after detraining (T3). At the same time points, one repetition maximum (1RM) was measured in squat, bench press, and leg press. Fat-free mass (FFM) was determined with dual x-ray absorptiometry and muscle biopsies obtained from vastus lateralis for the determination of fiber type composition and cross-sectional area (CSA). 1RM strength increased 22-34% (p < 0.01) at T2 and decreased 4-5% (not significantly different) at T3. Shot put performance increased 6-12% (p < 0.05) after training and remained unaltered after detraining. FFM increased at T2 (p < 0.05) but remained unchanged between T2 and T3. Muscle fiber CSA increased 12-18% (p < 0.05) at T2. Type I muscle fiber CSA was not altered after detraining, but type IIa and IIx fiber CSA was reduced 10-12% (p < 0.05). The percentage of type IIx muscle fibers was reduced after training (T1 = 18.7 +/- 4, T2 = 10.4 +/- 1; p < 0.05), and it was increased at T3 compared with T2 (T3 = 13.7 +/- 1; p < 0.05). These results suggest that shot put performance remains unaltered after 4 weeks of complete detraining in moderately resistance-trained subjects. This might be linked to the concomitant reduction of muscle fiber CSA and increase in the percentage of type IIx muscle fibers.  相似文献   

4.
The current study sought to examine the effects of chronic endurance treadmill running on oxidative capacity and capillary density in specific diaphragm muscle fiber types in young (5 mo) and senescent (greater than or equal to 23 mo) female Fischer 344 rats. Both young and senescent animals trained at approximately 75% of maximal O2 consumption for 1 h/day 5 days/wk for 10 wk. Plantaris citrate synthase activity was significantly increased (P less than 0.01) in both young and old trained groups. Densitometric analysis of succinate dehydrogenase (SDH) activity in diaphragm type I, IIa, and IIb muscle fibers was done using a computerized image-processing system. There were no age-related differences in SDH activity between the young and old groups for any of the fiber types. In addition, SDH activity was found to be significantly increased (P less than 0.05) in all three fiber types in both the young and senescent trained animals compared with their sedentary counterparts. Fiber size and capillary density did not differ between young and senescent rats, nor did exercise affect this measure. Each fiber, irrespective of type, had an average of approximately four capillaries in contact with it. However, type IIb fibers had a significantly lower capillary density per unit area than type I or IIa muscle fibers. The results indicate that the senescent costal diaphragm maintains its ability to adapt to an increased metabolic demand brought about by locomotor exercise. Of further interest is the finding that training adaptations occurred in all three fiber types, suggesting that increased work of breathing from moderate exercise leads to recruitment of all three fiber types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Five Standardbred trotters were trained on a treadmill 3 times/wk for 12 wk by intervals of draft-loaded exercise. The draft load was 34 kp and the velocity approximately 7 m/s. Muscle biopsies were taken from the gluteus medius and longissimus muscles before training and after 2, 4, 8, and 12 wk of training and from the brachiocephalicus muscle before and after training. Both the percentage and the area of type IIa fibers increased and the percentage of type IIb fibers decreased in the gluteus medius muscle during the first 2 wk of training, and then no further significant difference was noted. The percentage of type I fibers increased in the brachiocephalicus muscle, and the area of type IIb fibers increased in the longissimus muscle. The citrate synthase activity increased in the gluteus muscle only, and the increase was seen during the first 2 wk. No significant differences were seen in 3-hydroxy-acyl-CoA dehydrogenase and lactate dehydrogenase activities in the muscles during the entire training period. Less glycogen was utilized in the gluteus muscle and less blood lactate accumulated when the horses performed an unloaded submaximal exercise test after compared with before training. It can be concluded that rapid changes are induced in the gluteus medius muscle when horses are trained pulling a light-draft resistance at a submaximal trotting speed.  相似文献   

6.
Extreme endurance training and fiber type adaptation in rat diaphragm   总被引:1,自引:0,他引:1  
Extreme endurance training was used to investigate the adaptability of the rat diaphragm muscle fibers. During the final phase of the 14-wk training program, the animals were running for 240 min/day at an estimated requirement of 80% of pretraining maximal O2 consumption. Analysis of a sample of the costal diaphragm indicated that training resulted in a 34% reduction (P less than 0.05) in the percent distribution of type IIa fibers [27.7 +/- 1.1 vs. 18.3 +/- 2.6 (SE)] and a 15% increase (P less than 0.05) in the percent of type IIb fibers (40.0 +/- 1.2 vs. 46.1 +/- 2.4). No change (P greater than 0.05) was found in the distribution of the type I fibers (32.3 +/- 1.2 vs. 35.7 +/- 1.3). Oxidative potential as assessed with NADH-tetrazolium reductase and measured microphotometrically increased (P less than 0.05) by 19% in type I fibers but did not change in either the type IIa or type IIb fibers. No effect of training was found when a different oxidative marker, succinic dehydrogenase, was employed. Similarly glycolytic potential based on the activity of alpha-glycerophosphate dehydrogenase was not affected by training. Glycogen concentration was elevated by 60% (P less than 0.01) in type I fibers and 77% (P less than 0.01) in type IIb fibers with training but was not altered (P greater than 0.05) in type IIa fibers. Reductions (P less than 0.05) in fiber area ranging from 11 to 20% were observed in all fiber types as a result of training, whereas the number of capillaries per fiber remained static.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I(+) (containing some type I MHC with or without any combination of fast MHCs), type IIa(+) (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I(+) fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36-90%) cross-sectional area and a significantly higher (61-109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.  相似文献   

8.
Effects of strength training (ST) for 21 wk were examined in 10 older women (64 +/- 3 yr). Electromyogram, maximal isometric force, one-repetition maximum strength, and rate of force development of the leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF) and of vastus lateralis (VL), medialis (VM), intermedius (VI) and rectus femoris (RF) throughout the lengths of 3/12--12/15 (Lf) of the femur, muscle fiber proportion and areas of types I, IIa, and IIb of the VL were evaluated. Serum hormone concentrations of testosterone, growth hormone (GH), cortisol, and IGF-I were analyzed for the resting, preexercise, and postexercise conditions. After the 21-wk ST, maximal force increased by 37% (P < 0.001) and 1-RM by 29% (P < 0.001), accompanied by an increase (P < 0.01) in rate of force development. The integrated electromyograms of the vastus muscles increased (P < 0.05). The CSA of the total QF increased (P < 0.05) throughout the length of the femur by 5--9%. The increases were significant (P < 0.05) at 7/15--12/15 Lf for VL and at 3/15--8/15 Lf for VM, at 5/15--9/15 for VI and at 9/15 (P < 0.05) for RF. The fiber areas of type I (P < 0.05), IIa (P < 0.001), and IIb (P < 0.001) increased by 22--36%. No changes occurred during ST in serum basal concentrations of the hormones examined, but the level of testosterone correlated with the changes in the CSA of the QF (r = 0.64, P < 0.05). An acute increase of GH (P < 0.05), remaining elevated up to 30 min (P < 0.05) postloading, was observed only at posttraining. Both neural adaptations and the capacity of skeletal muscle to undergo training-induced hypertrophy even in older women explain the strength gains. The increases in the CSA of the QF occurred throughout its length but differed selectively between the individual muscles. The serum concentrations of hormones remained unaltered, but a low level of testosterone may be a limiting factor in training-induced muscle hypertrophy. The magnitude and time duration of the acute GH response may be important physiological indicators of anabolic adaptations during strength training even in older women.  相似文献   

9.
The aim of this study was to assess the relationships between human muscle fiber hypertrophy, protein isoform content, and maximal Ca(2+)-activated contractile function following a short-term period of resistance exercise training. Six male subjects (age 27 +/- 2 yr) participated in a 12-wk progressive resistance exercise training program that increased voluntary lower limb extension strength by >60%. Single chemically skinned fibers were prepared from pre- and posttraining vastus lateralis muscle biopsies. Training increased the cross-sectional area (CSA) and peak Ca(2+)-activated force (P(o)) of fibers containing type I, IIa, or IIa/IIx myosin heavy chain by 30-40% without affecting fiber-specific force (P(o)/CSA) or unloaded shortening velocity (V(o)). Absolute fiber peak power rose as a result of the increase in P(o), whereas power normalized to fiber volume was unchanged. At the level of the cross bridge, the effects of short-term resistance training were quantitative (fiber hypertrophy and proportional increases in fiber P(o) and absolute power) rather than qualitative (no change in P(o)/CSA, V(o), or power/fiber volume).  相似文献   

10.
Functional performance of lower limb muscles and contractile properties of chemically skinned single muscle fibers were evaluated before and after 8 wk of maximal effort stretch-shortening cycle (SSC) exercise training. Muscle biopsies were obtained from the vastus lateralis of eight men before and after the training period. Fibers were evaluated regarding their mechanical properties and subsequently classified according to their myosin heavy chain content (SDS-PAGE). After training, maximal leg extensor muscle force and vertical jump performance were improved 12% (P<0.01) and 13% (P<0.001), respectively. Single-fiber cross-sectional area increased 23% in type I (P<0.01), 22% in type IIa (P<0.001), and 30% in type IIa/IIx fibers (P<0.001). Peak force increased 19% in type I (P<0.01), 15% in type IIa (P<0.001), and 16% in type IIa/IIx fibers (P<0.001). When peak force was normalized with cross-sectional area, no changes were found for any fiber type. Maximal shortening velocity was increased 18, 29, and 22% in type I, IIa, and hybrid IIa/IIx fibers, respectively (P<0.001). Peak power was enhanced in all fiber types, and normalized peak power improved 9% in type IIa fibers (P<0.05). Fiber tension on passive stretch increased in IIa/IIx fibers only (P<0.05). In conclusion, short-term SSC exercise training enhanced single-fiber contraction performance via force and contraction velocity in type I, IIa, and IIa/IIx fibers. These results suggest that SSC exercises are an effective training approach to improve fiber force, contraction velocity, and therefore power.  相似文献   

11.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

12.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Low load resistance training with blood flow restriction (BFR) can increase muscle size and strength, but the implications on the conduit artery are uncertain. We examined the effects of low-load dynamic handgrip training with and without BFR, and detraining, on measures of brachial artery function and structure. Nine male participants (26 ± 4 yr, 178 ± 3 cm, 78 ± 10 kg) completed 4 wk (3 days/wk) of dynamic handgrip training at 40% 1 repetition maximum (1RM). In a counterbalanced manner, one forearm trained under BFR (occlusion cuff at 80 mmHg) and the other under nonrestricted (CON) conditions. Brachial artery function [flow-mediated dilation (FMD)] and structure (diameter) were assessed using Doppler ultrasound. Measurements were made before training (pretraining), after training (posttraining), and after 2-wk no training (detraining). Brachial artery diameter at rest, in response to 5-min ischemia (peak diameter), and ischemic exercise (maximal diameter) increased by 3.0%, 2.4%, and 3.1%, respectively, after BFR training but not after CON. FMD did not change at any time point in either arm. Vascular measures in the BFR arm returned to baseline after 2 wk detraining with no change after CON. The data demonstrate that dynamic low-load handgrip training with BFR induced transient adaptations to conduit artery structure but not function.  相似文献   

15.
In this study we elucidate the interaction of physical activity with aging as regards skeletal muscle fiber distribution and size. Thirty-three male athletes and 42 normally active counterparts served as subjects. They were assigned to younger (less than 25.5 years) and older (greater than 25.5 years) subgroups. Serial cross-sections from muscle biopsy samples (musculus vastus lateralis) were stained to distinguish fiber type: fast glycolytic (type IIb), fast oxidative-glycolytic (type IIa), or slow oxidative (type I). We also measured fiber diameters. A greater mean diameter of type I fibers was seen in older as opposed to younger athletes. Older controls had a smaller mean diameter of type IIb fibers than did younger controls. Athletes had a smaller mean percentage of type IIa fibers and a greater mean percentage of type I fibers than did controls. There was a greater mean percentage of type I fibers in older as opposed to younger controls, but this was not the case in athletes. Athletes may have larger fibers and a greater percentage of type I fibers at the expense of type IIa fibers. Atrophy of fibers with aging might be retarded by training, which might also reduce the age-associated rate of type IIb percentage loss and type I percentage gain.  相似文献   

16.
安排9名有一定训练的青少年运动员参加10周举重训练。每周6次,每次8小时。训练前后用电子计算机—X线断层扫描技术(CT)测量大腿肌肉横断面积,股外肌针刺活检取样测定Ⅰ、Ⅱ型肌纤维%和面积。测定大腿伸膝肌最大随意等长力量。将结果(实验前、后)与对照组(13名无训练者)和优秀举重运动员(健将3人、一级4人)进行比较。结果表明,有训练人(实验前、后和优秀)与没有训练人(对照)在肌比力上存有差别。短、长期举重训练后,肌比力与Ⅱ型肌纤维%呈正相关。短、长期举重训练不曾改变肌纤维类型分布。举重训练对Ⅱ型肌纤维有选择性作用,且这个作用不受年龄的影响。结果还提示,肌比力的变化及肌比力与肌纤维之间的关系都会受运动项目专项特点的影响。  相似文献   

17.
Adult skeletal muscle undergoes adaptation in response to endurance exercise, including fast-to-slow fiber type transformation and enhanced angiogenesis. The purpose of this study was to determine the temporal and spatial changes in fiber type composition and capillary density in a mouse model of endurance training. Long-term voluntary running (4 wk) in C57BL/6 mice resulted in an approximately twofold increase in capillary density and capillary-to-fiber ratio in plantaris muscle as measured by indirect immunofluorescence with an antibody against the endothelial cell marker CD31 (466 ± 16 capillaries/mm2 and 0.95 ± 0.04 capillaries/fiber in sedentary control mice vs. 909 ± 55 capillaries/mm2 and 1.70 ± 0.04 capillaries/fiber in trained mice, respectively; P < 0.001). A significant increase in capillary-to-fiber ratio was present at day 7 with increased concentration of vascular endothelial growth factor (VEGF) in the muscle, before a significant increase in percentage of type IIa myofibers, suggesting that exercise-induced angiogenesis occurs first, followed by fiber type transformation. Further analysis with simultaneous staining of endothelial cells and isoforms of myosin heavy chains (MHCs) showed that the increase in capillary contact manifested transiently in type IIb + IId/x fibers at the time (day 7) of significant increase in total capillary density. These findings suggest that endurance training induces angiogenesis in a subpopulation of type IIb + IId/x fibers before switching to type IIa fibers. adaptation; capillary density; endothelial cells; fiber type transformation; vascular endothelial growth factor  相似文献   

18.
Ten rats were trained to perform approximately 30 jumps/day, 5 days/wk for at least 8 wk, from a force platform that enabled the number and height of jumps to be quantified. There was considerable variation in height jumped during an activity session both within and between rats. The two highest-jumping rats attained a displacement of center of mass of approximately 30 cm, estimated to be approximately 67% of the maximum attainable. The two lowest-jumping rats jumped to approximately 30% of the estimated maximum. The activity was described as "habitual activity" rather than "training" because there were no significant increases in the height of jumping by any rat over the period of activity. The isometric properties of medial gastrocnemius (MG) and soleus muscles were studied in terminal experiments on anesthetised rats. Five significant effects on MG were evoked by this pattern of exercise ("habituation"): 1) a 15-18% increase in force at frequencies of stimulation between 60 and 150 Hz and a 15% increase in maximum tetanic tension to 14.9 N, 2) a 3% increase in the maximum rate of rise of tetanic force to 3.4% of maximum tetanic tension per millisecond, 3) an increase in fatigability expressed as a smaller fatigue index in active rats (33%) than in controls (58%), 4) a decrease of 4% in the percentage of type IIa muscle fibers, and 5) an increase of 6% in the percentage of type II fibers that could not be classified with certainty as IIa or IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The response of muscle fiber type proportions and fiber areas to 15 weeks of strenuous high-intensity intermittent training was investigated in twenty-four carefully ascertained sedentary (14 women and 10 men) and 10 control (4 women and 6 men) subjects. The supervised training program consisted mainly of series of supramaximal exercise lasting 15 s to 90 s on a cycle ergometer. Proportions of muscle fiber type and areas of the fibers were determined from a biopsy of the vastus lateralis before and after the training program. No significant change was observed for any of the histochemical characteristics in the control group. Training significantly increased the proportion of type I and decreased type IIb fibers, the proportion of type IIa remained unchanged. Areas of type I and IIb fibers increased significantly with training. These results suggest that high-intensity intermittent training in humans may alter the proportion of type I and the area of type I and IIb fibers and in consequence that fiber type composition in human vastus lateralis muscle is not determined solely by genetic factors.  相似文献   

20.
Effect of swim exercise training on human muscle fiber function   总被引:1,自引:0,他引:1  
This study examined the effect of a typical collegiate swim-training program and an intensified 10-day training period on the peak tension (Po), negative log molar Ca2+ concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers of the deltoid muscle. Over a 10-wk period, the swimmers averaged 4,266 +/- 264 m/day swimming intermittent bouts of front crawl, kicking, or pulling. The training program induced an almost twofold increase in the mitochondrial marker enzyme citrate synthase. Po of the single fibers was not altered by either the training or 10-day intensive training programs, and no significant differences were observed in the Po (kg/cm2) of type I compared with the type II fibers. The type II fiber diameters were significantly larger than the type I fibers (94 +/- 4 vs. 80 +/- 2 microns), and although fiber diameters were unaffected by the training, the 10-day intensive training significantly reduced the type II fiber diameter. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right such that higher free Ca2+ levels were required to elicit a given percent of Po (for values less than 0.5 Po). The activation threshold (pCa) for the onset of tension and the pCa required to elicit one-half maximal tension were not altered by the training in either fiber type. Fiber Vmax (measured by the slack test) was fivefold higher in type II compared with type I fibers (4.85 +/- 0.50 vs. 0.86 +/- 0.04 fiber lengths/s). The exercise-training program significantly increased and decreased the Vmax of the slow and fast fibers, respectively. The 10 days of intensified training produced a further significant decrease in the Vmax of the type II fibers. After a period of detraining, the Vmax of both fiber types returned to the control level. The force-velocity relation was not significantly altered in either fiber type by the swim training; however, the intensified training significantly depressed the velocity of the type II fiber at all loads studied. The Vmax changes with exercise training are likely explained by an exercise-induced expression of fast myosin in slow fibers and slow myosin in fast fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号