首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linking the high affinity IgE receptor, Fc epsilon R1, with multivalent antigen induces inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-dependent release of intracellular Ca2+ stores, Ca2+ influx, and secretion of inflammatory mediators from RBL-2H3 mast cells. Here, fluorescence ratio imaging microscopy was used to characterize the antigen-induced Ca2+ responses of single fura-2-loaded RBL-2H3 cells in the presence and absence of extracellular Ca2+ (Ca2+o). As antigen concentration increases toward the optimum for secretion, more cells show a Ca2+ spike or an abrupt increase in [Ca2+]i and the lag time to onset of the response decreases both in the presence and the absence of Ca2+o. When Ca2+o is absent, fewer cells respond to low antigen and the lag times to response are longer than those measured in the presence of Ca2+o, indicating that Ca2+o contributes to Ca2+ stores release. Ins(1,4,5)P3 production is not impaired by the removal of Ca2+o, suggesting that extracellular Ca2+ influences Ca2+ stores release via an effect on the Ins(1,4,5)P3 receptor. Stimulation with low concentrations of antigen can lead, only in the presence of Ca2+o, to a small, gradual increase in [Ca2+]i before the abrupt spike response that indicates store release. We propose that this small, initial [Ca2+]i increase is due to receptor-activated Ca2+ influx that precedes and may facilitate Ca2+ stores release. A mechanism for capacitative Ca2+ entry also exists in RBL-2H3 cells. Our data suggest that a previously undescribed response to Fc epsilon R1 cross-linking, inhibition of Ca2+ stores refilling, may be involved in activating capacitative Ca2+ entry in antigen-stimulated RBL-2H3 cells, thus providing the elevated [Ca2+]i required for optimal secretion. The existence of both capacitative entry and Ca2+ influx that can precede Ca2+ release from intracellular stores suggests that at least two mechanisms of stimulated Ca2+ influx are present in RBL-2H3 cells.  相似文献   

2.
The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.  相似文献   

3.
Thrombin-stimulated endothelial cells produce platelet-activating factor (PAF) in a dose-dependent manner: the activation of a Ca2+-dependent lyso-PAF acetyltransferase is the rate-limiting step in this process. The present study shows that acetyltransferase activation and consequent PAF production induced by thrombin in human endothelial cells are markedly inhibited in Na+-free media or after addition of the amiloride analog 5-(N-ethyl-N-isopropyl)amiloride, suggesting that a Na+/H+ antiport system is present in endothelial cells and plays a prominent role in thrombin-induced PAF synthesis. Accordingly, thrombin elicits a sustained alkalinization in 6-carboxyfluorescein-loaded endothelial cells, that is abolished in either Na+-free or 5-(N-ethyl-N-isopropyl)amiloride-containing medium. Extracellular Ca2+ influx induced by thrombin (as measured by quin2 and 45Ca methods) is completely blocked in the same experimental conditions, and monensin, a Na+/H+ ionophore mimicking the effects of the antiporter activation, evokes a dose-dependent PAF synthesis and a marked Ca2+ influx, which are abolished in Ca2+-free medium. An amiloride-inhibitable Na+/H+ exchanger is present in the membrane of human endothelial cells, its apparent Km for extracellular Na+ is 25 mM, and its activity is greatly enhanced when the cytoplasm is acidified. These results suggest that Na+/H+ exchange activation by thrombin and the resulting intracellular alkalinization play a direct role in the induction of Ca2+ influx and PAF synthesis in human endothelial cells.  相似文献   

4.
In clonal rat pituitary cells (GH cells), thyrotropin-releasing hormone (TRH) induced a pattern of changes in cytosolic free calcium concentrations [( Ca2+]i) composed of two phases: an acute spike phase to micromolar levels which decayed (t1/2 = 8 s) to a near-basal concentration and then rose to a prolonged plateau phase of elevated [Ca2+]i (as measured using Quin 2). Closely following these changes in [Ca2+]i, TRH stimulated a rapid "spike phase" of pronounced, but brief, enhancement of the rate of prolactin and growth-hormone secretion and then a "plateau phase" of prolonged enhancement. These two phases were dissociated using two classes of pharmacologic agents: the ionophore ionomycin, and a calcium channel antagonist nifedipine. Ionomycin (100 nM) specifically blocked (less than 90%) the spike phase of TRH action by rapidly emptying the TRH-regulated reservoir of cellular Ca2+ to generate a TRH-like spike in [Ca2+]i; nifedipine inhibited (less than 50%) the plateau phase of TRH-induced changes in [Ca2+]i and hormone secretion by preventing Ca2+ influx through voltage-dependent Ca2+ channels. These agents demonstrated that the TRH-induced spike in [Ca2+]i in GH cells is caused by release of an ionomycin-sensitive pool of cellular Ca2+ with a small component (10%) due to influx of extracellular Ca2+. The TRH-induced plateau in [Ca2+]i is due to influx of extracellular Ca2+, about half of which enters through voltage-dependent calcium channels and half of which enters via nifedipine/verapamil-insensitive influx. The TRH-induced spike in [Ca2+]i led to a burst in hormone secretion, and the plateau in [Ca2+]i produced a prolonged enhancement of secretion; the spike and plateau phases were generated independently by TRH. A spike in [Ca2+]i is necessary, but not sufficient, to induce burst release of hormone, while the prolonged rate of hormone secretion is intimately related to the steady-state [Ca2+]i.  相似文献   

5.
In RBL-2H3 rat basophilic leukemia cells, Ca2+ influx and secretion are activated by antigens that crosslink IgE-receptor complexes and by the Ca2+ ionophore, ionomycin. Here we report that antigen-stimulated Ca2+ influx and secretion are impaired and ionomycin-induced responses are strongly inhibited following the removal of HCO3- from the medium. These results raised the possibility that HCO3(-)-dependent pH regulation mechanisms play a role in the cascade of events leading to mast cell activation. To test this hypothesis, intracellular pH (pHi) was measured by ratio imaging microscopy in individual RBL-2H3 cells labeled with 2',7'-bis-(2-carboxyethyl)-5-(6) carboxyfluorescein (BCECF). In unstimulated cells, it was found that basal pHi in the presence of HCO3- is 7.26, significantly greater than pHi in its absence, 7.09 (P less than 10(-6]. These results, as well as evidence that pHi increases rapidly when HCO3- is added to cells initially incubated in HCO3(-)-free medium, indicate that unstimulated cells use a HCO3(-)-dependent mechanism to maintain cytoplasmic pH. Further analyses comparing unstimulated with stimulated cells showed that antigen causes a small transient acidification in medium containing HCO3- and a larger sustained acidification in HCO3(-)-depleted medium. Ionomycin is a more potent acidifying agent, stimulating a sustained acidification in complete medium and causing further acidification in HCO3(-)-free medium. These results support the hypothesis that the inhibition of antigen- and ionomycin-induced 45Ca2+ influx and secretion in cells incubated in HCO3(-)-free medium is at least partially due to the inactivation of HCO3(-)-dependent mechanisms required to maintain pH in unstimulated cells and to permit pH recovery from stimulus-induced acidification.  相似文献   

6.
The Na+/Ca2+ antiporter is present in aortic smooth muscle cells of the A7r5 cell line. Imposing an outward Na+ gradient to the cells promoted a 45Ca2+ uptake component which was sensitive to amiloride derivatives and insensitive to blockers of the voltage-dependent Ca2+ channel. The Ca2+ uptake system was dependent on intracellular Na+ concentration; it was inactive when Li+ replaced intracellular Na+ and it was electrogenic. Flow cytometric analysis of cells that had been loaded with the Ca2+ indicator indo-1 showed that all conditions that promoted Ca2+ influx led to corresponding increases in the free cytoplasmic Ca2+ concentration. Treatment of the A7r5 cells with phorbol myristate acetate, a known activator of protein kinase C (Ca2+/phospholipid-dependent enzyme), led to a two-fold activation of the system and to larger intracellular Ca2+ transients when cells were shifted to Na+-free solutions. Activation was observed at all intracellular Na+ concentrations. Changing the activity of the Na+/Ca2+ system did not affect the size and duration of intracellular Ca2+ transients elicited by the Ca2+ mobilizing hormone vasopressin. It is concluded that the Na+/Ca2+ antiporter in smooth muscle cells is a target for protein kinase C but that the system is not involved in the regulation of Ca2+ transients induced by vasopressin.  相似文献   

7.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

8.
We have used phorbol esters, such as 12-O-tetradecanoyl phorbol 13-acetate (TPA), to study the actions of protein kinase C (a TPA receptor) on cytosolic free Ca2+ concentrations [( Ca2+]i) and hormone secretion in rat pituitary cells (GH cells), and to elucidate the role of diacylglycerol (a protein kinase C activator) in thyrotropin-releasing hormone (TRH) action. TPA had a dual action on [Ca2+]i, inducing a stimulatory phase from 300 (basal) to 420 nM, which was interrupted in 30-60 s by an inhibitory phase which transiently lowered [Ca2+]i to 240 nM and rose in 3-10 min to yield the stimulatory phase. TPA-mediated changes in [Ca2+]i were induced by other phorbol esters and mezerein but not by phorbol or activators of kinases different from protein kinase C. Both phases of TPA action on [Ca2+]i were abolished by 5-min pretreatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (1.33 mM) or Ca2+ channel antagonists (verapamil or nifedipine). TPA also enhanced the rate of sustained hormone secretion without inducing a burst of hormone release (unlike TRH). Also, stimulation of secretion by TPA was not inhibited by Ca2+ channel antagonists and was resistant (10%) to EGTA. Simultaneous addition of TPA with the ionophore ionomycin (100 nM) reconstituted a TRH-like spike, nadir and plateau of [Ca2+]i. Ionomycin generated the spike in [Ca2+]i by releasing TRH-sensitive Ca2+ stores, while TPA induced the nadir (inhibitory phase), and a nifedipine/verapamil-sensitive plateau of [Ca2+]i (stimulatory phase). Concurrent (but not separate) addition of ionomycin and TPA also reconstituted a TRH-like burst of hormone secretion. These and previous results indicate that activation of protein kinase C by TPA or diacylglycerol (which is elevated by TRH) and a simultaneous spike in [Ca2+]i are required for burst secretion. Diacylglycerol may also mediate the TRH-induced nadir and plateau of [Ca2+]i; the latter process contributes to Ca2+-dependent stimulation of steady secretion by TRH.  相似文献   

9.
The effects of thyrotropin-releasing hormone (TRH) and 12-O-tetradecanoylphorbol 13-acetate (TPA) on cytosolic pH (pHi) were studied on GH4C1 pituitary cells loaded with the fluorescent pH indicator bis(carboxyethyl)carboxyfluorescein (BCECF) and the fluorescent Ca2+ indicator quin2. TRH, which was minimally effective at around 10(-9) M, and TPA, 100 nM, produced very small elevations in pHi of about 0.05 pH units from the normal basal resting pHi of GH4C1 cells of around 7.05. The effects were more marked after acid-loading the cells using 1 micrograms of nigericin/ml. Preincubation with amiloride or replacing the extracellular Na+ with choline+ completely blocked the elevations stimulated by TRH or TPA, consistent with an activation of the Na+/H+ antiport mechanism. The effects were completely independent of the cytoplasmic free calcium concentration ([Ca2+]i). The calcium ionophore ionomycin produced an elevation in [Ca2+]i with no concomitant effect on pHi, and amiloride, although completely inhibiting the pH change stimulated by TRH, failed to affect the initial stimulated [Ca2+]i transient. Although the data are consistent with an elevation in pHi by TRH which is caused by stimulation of a protein kinase C and subsequent activation of the antiporter, the rapidity of the onset of the pHi response to TRH could not be mimicked by a combination of TPA and ionomycin. These results, together with previous findings which show that secretion can be mimicked by TPA and ionomycin, suggest that TRH-stimulated Na+/H+ exchange plays no part in the acute stimulation of secretion, but that TRH increases the pH-sensitivity of the antiport system during increased synthesis of prolactin and growth hormone.  相似文献   

10.
During net Mg2+ efflux from Mg2+-preloaded chicken erythrocytes, which occurs via Na+/Mg2+ antiport, 28Mg2+ is taken up intracellularly. Km of 28Mg2+ influx amounted to 1 mM. In Na+-free medium Vmax of 28Mg2+ influx was increased and Km was reduced to 0.2 mM. 28Mg2+ influx was noncompetitively inhibited by amiloride as was found for Na+/Mg2+ antiport. The results indicate that, extracellularly, Mg2+ can compete with Na+ for common binding sites of the Na+/Mg2+ antiporter, resulting in 28Mg2+-24Mg2+ exchange. The rate of Mg2+ exchange depends on extracellular Na+ and on the rate of net Mg2+ efflux.  相似文献   

11.
Platelet activation is accompanied by an increase of cytosolic free Ca2+ concentration, [Ca2+]i, (due to both extracellular Ca2+ influx and Ca2+ movements from the dense tubular system) and an Na+ influx associated with H+ extrusion. The latter event is attributable to the activation of Na+/H+ exchange, which requires Na+ in the extracellular medium and is inhibited by amiloride and its analogs. The present study was carried out to determine whether a link exists between Ca2+ transients (measured by the quin2 method and the 45CaCl2 technique) and Na+/H+ exchange activation (studied with the pH-sensitive intracellular probe, 6-carboxyfluorescein) during platelet stimulation. Washed human platelets, stimulated with thrombin and arachidonic acid, showed: (1) a large and rapid [Ca2+]i rise, mostly due to a Ca2+ influx through the plasma membrane; (2) a marked intracellular alkalinization. Both phenomena were markedly inhibited in the absence of extracellular Na+ or in the presence of an amiloride analog (EIPA). Monensin, a cation exchanger which elicits Na+ influx and alkalinization, and NH4Cl, which induces alkalinization only, were able to evoke an increase in [Ca2+]i, mostly as an influx from the extracellular medium. Our results suggest that Ca2+ influx induced by thrombin and arachidonic acid in human platelets is strictly dependent on Na+/H+-exchange activation.  相似文献   

12.
Intracellular pH (pHi) of human platelets was measured with the fluorescent dye 2',7'-bis(carboxyethyl)5,6-carboxyfluorescein under various conditions. Stimulation by thrombin at 23 degrees C caused a biphasic change in pHi (initial pHi 7.09); a rapid fall of 0.01-0.04 units (correlated with the rise of [Ca2+]i measured with quin2) followed after 10-15 s by a sustained rise of 0.1-0.15 units pHi. The fall of pHi and [Ca2+]i mobilization was reduced by early (5 s) addition of hirudin, but the later elevated pHi was not reversed by hirudin added after 30 s, although this strips thrombin from receptors and rapidly returns [Ca2+]i to basal levels. In Na+-free medium, or in presence of the Na+/H+ antiport inhibitors, 5-(N,N-dimethyl)amiloride (DMA) or 5-(N-ethyl-N-isopropyl)amiloride (EIPA), thrombin caused a greater fall of pHi (0.22-0.26 units) that was sustained. DMA or EIPA could also reverse the alkalinization response to thrombin. Ca2+ ionophores (ionomycin, A23187) decreased platelet pHi by 0.02-0.15 units, but without an increase of pHi comparable to that following thrombin; DMA and EIPA enhanced the fall of pHi (0.14-0.33 units). Cytoplasmic acidification produced by nigericin (K+/H+ ionophore) was followed by return towards normal that was abolished by Na+/H+ antiport inhibitors. The phorbol diester phorbol 12-myristate 13-acetate had little effect on resting pHi but increased the rate of recovery 2-3-fold after cytoplasmic acidification by nigericin, ionomycin, or sodium propionate. These results indicate that elevation of [Ca2+]i by thrombin enhances H+ production, but the subsequent alkalinization is independent of receptor occupancy or elevated [Ca2+]i and stimulation of the Na+/H+ antiporter by thrombin probably involves some mechanism apart from regulation by H+ and protein kinase C.  相似文献   

13.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

14.
The effects of a phorol ester and a mitogenic lectin on the intracellular pH (pHi) of human T lymphocytes was investigated. In contrast to the cytoplasmic alkalinization induced by 12-0-tetradecanoylphorbol-13-acetate, an acidification was recorded in cells treated with phytohemagglutinin. This decrease in pHi was magnified in Na+-free medium or in the presence of amiloride analogues, suggesting that activation of Na+/H+ exchange partially counteracts the phytohemagglutinin-induced acidification. The decrease in pHi was dependent on a sustained increase in cytosolic free Ca2+ and could be mimicked by addition of the divalent cation ionophore, ionomycin. The elevation of cytosolic free Ca2+ leads to metabolic H+ (equivalent) generation with consequent cytoplasmic acidification, which in human T cells predominates over the concurrent activation of the Na+/H+ antiport. These findings argue against the notion that activation of Na+/H+ exchange is a signal for the initiation of proliferation.  相似文献   

15.
Activation of neutrophils by most soluble stimuli is associated with a marked increase in intracellular free Ca2+ ([Ca2+]i). However, under physiological conditions (Na+-rich media), the potent activator 12-O-tetradecanoylphorbol-13-acetate (TPA) causes no change or a decrease in [Ca2+]i. We report here that the [Ca2+]i response to phorbol esters varies depending on the ionic composition of the medium. A marked increase in [Ca2+]i was detected in Na+-free solutions. Maximal effects were observed when N-methyl-D-glucammonium+ or choline+ were substituted for Na+, whereas an intermediate response was recorded in K+ medium. The increase in [Ca2+]i was substantially (approximately 65%) inhibited by removal of external Ca2+. A [Ca2+]i increase was also elicited by other beta-phorbol diesters and by diacylglycerol, but not by unesterified phorbol or by alpha-phorbol diesters, indicating involvement of protein kinase C. The increase in [Ca2+]i observed in Na+-free media is not due to inhibition of Na+/Ca2+ exchange, since no change in [Ca2+]i in response to TPA was observed in: 1) cells suspended in Li+, which is not countertransported for Ca2+; 2) cells preloaded with Na+ to eliminate the driving force for Na+/Ca2+ exchange; and 3) cells treated with 3',4'-dichlorobenzamyl, an inhibitor of Na+/Ca2+ exchange. Similarly, the [Ca2+]i increase in Na+-free media is not linked to the absence of Na+/H+ exchange and the associated cytoplasmic acidification since: 1) it was not observed in Na+ media in the presence of inhibitors of the Na+/H+ antiport and 2) it was not mimicked by inducing acidification with nigericin. Pretreatment with pertussis toxin largely inhibited the phorbol ester-induced change in [Ca2+]i, while activation of protein kinase C under these conditions was unaffected. It is concluded that in the absence of extracellular Na+ (or Li+), activation of protein kinase C leads to a net Ca2+ influx into the cytoplasm through a process mediated by a GTP-binding or G protein. Opening of a Na+-sensitive Ca2+ channel could partially explain these observations. Alternatively, the nature of the monovalent cation could conceivably affect the conformation of a G protein or of an associated receptor, inducing the appearance of a site susceptible to an activating phosphorylation by protein kinase C.  相似文献   

16.
The interaction of quinine with K+ and Na+ transport mechanisms has been investigated in Ehrlich ascites tumor cells. Quinine affects both Ca2+-dependent K+ channel and total K+ influx. Activation of Ca+-dependent K+ channels by propranolol is abolished by quinine (1 mM). In addition, quinine inhibits the ouabain-sensitive component of K+ influx with an apparent Ki of 0.32 +/- 0.02 mM and the furosemide-sensitive component with a Ki of 0.24 +/- 0.01 mM. Furthermore, a significant fraction (52%) of Na+ influx is inhibited by quinine. The same component is sensitive to amiloride, suggesting that it represents Na+/H+ antiport. Concomitant with the inhibition of K+ and Na+ transport, quinine stimulates ATP hydrolysis by 57%. The results suggest that quinine exerts broad, nonspecific effects on cellular mechanisms which serve to regulate cation transport in Ehrlich cells.  相似文献   

17.
It has long been recognized that magnesium is associated with several important diseases, including diabetes, hypertension, cardiovascular, and cerebrovascular diseases. In the present study, we measured the intracellular free Mg2+ concentration ([Mg2+]i) using 31P nuclear magnetic resonance (NMR) in pig carotid artery smooth muscle. In normal solution, application of amiloride (1 mm) decreased [Mg2+]i by approximately 12% after 100 min. Subsequent washout tended to further decrease [Mg2+]i. In contrast, application of amiloride significantly increased [Mg2+]i (by approximately 13% after 100 min) under Ca2+-free conditions, where passive Mg2+ influx is facilitated. The treatments had little effect on intracellular ATP and pH (pHi). Essentially the same Ca2+-dependent changes in [Mg2+]i were produced with KB-R7943, a selective blocker of reverse mode Na+-Ca2+ exchange. Application of dimethyl amiloride (0.1 mM) in the presence of Ca2+ did not significantly change [Mg2+]i, although it inhibited Na+-H+ exchange at the same concentration. Removal of extracellular Na+ caused a marginal increase in [Mg2+]i after 100-200 min, as seen in intestinal smooth muscle in which Na+-Mg2+ exchange is known to be the primary mechanism of maintaining a low [Mg2+]i against electrochemical equilibrium. In Na+-free solution (containing Ca2+), neither amiloride nor KB-R7943 decreased [Mg2+]i, but they rather increased it. The results suggest that these inhibitory drugs for Na+-Ca2+ exchange directly modulate Na+-Mg2+ exchange in a Ca2+-dependent manner, and consequently produce the paradoxical decrease in [Mg2+]i in the presence of Ca2+.  相似文献   

18.
The effects of extracellular Na+ (Na+o) on cytosolic ionized calcium (Ca2+i) and on calcium and sodium fluxes were measured in monkey kidney cells (LLC-MK2). Ca2+i was measured with aequorin and the ion fluxes with 45Ca and 22Na. Na+-free media rapidly increased Ca2+i from 60 to a maximum of about 700 nM in 2-3 min. After the peak, Ca2+i declined and reached a plateau of about twice the resting Ca2+i. The peak Ca2+i was inversely proportional to Na+o and directly proportional to the extracellular calcium concentration (Ca2+o). On the other hand, a pH of 6.8 reduced and Ca2+o substitution with Sr2+ completely blocked the Ca2+i response to low Na+o. A Na+-free medium stimulated calcium efflux from the cells 4-5-fold, a response which was abolished in the absence of extracellular Ca2+. Na+-free media also stimulated calcium influx and sodium efflux. The cell calcium content, however, was not increased. These results indicate that removal of extracellular Na+ increases Ca2+i by stimulating calcium influx and not by inhibiting calcium efflux; the increased calcium influx takes place on the Na+-Ca2+ antiporter operating in the reverse mode in exchange for sodium efflux. The increased calcium efflux occurs as a consequence of the rise in Ca2+i and presumably takes place on the (Ca2+-Mg2+) ATPase-dependent calcium pump.  相似文献   

19.
J B Smith  T Zheng  R M Lyu 《Cell calcium》1989,10(3):125-134
Ionomycin (1 microM) produced a large spike in cytosolic free Ca2+ [( Ca2+]i). The ionophore had no effect on [Ca2+]i if the sarcoplasmic reticulum had previously been Ca2+ depleted by stimulating neurohormone receptors. Ionomycin markedly increased 45Ca2+ efflux and decreased total cell Ca2+ by 60 to 70% in 1 min. Replacing extracellular Na+ [( Na+]o) with choline or N-methyl-D-glucamine strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total Ca2+. Ionomycin caused similar peak increases in [Ca2+]i in the presence and absence of [Na+]o, but the exponential fall from the peak was faster in the presence of [Na+]o. Dimethylbenzamil, a potent blocker of Na+/Ca2+ exchange in these cells, strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total cell Ca2+. We conclude that the increase in cytosolic free Ca2+ produced by ionomycin may be sufficient to activate the plasma membrane Na+/Ca2+ exchanger which removes Ca2+ from the cytosol and helps restore basal [Ca2+]i.  相似文献   

20.
A Na+/Ca2+ exchange mechanism has been recently described in human neutrophils that constitutes the principal pathway for Ca2+ influx into resting cells. The potential role of this system in regulating the respiratory burst in response to activation by the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine was explored. In the presence of 1 mM Ca2+, a variety of di- and trivalent cations suppressed the generation of O(-2) radicals in a series of decreasing efficacy: La3+ approximately Zn2+ much greater than Sr2+ approximately Cd2+ greater than Ba2+ greater than Co2+ greater than Ni2+ approximately Mg2+. This sequence is similar to their rank order of activity in inhibiting 45Ca2+ influx via Na+/Ca2+ counter-transport. Benzamil, phenamil, and 2',4'-dichlorobenzamil, analogues of amiloride which selectively block Na+/Ca2+ exchange in neutrophils, likewise suppressed the release of O(-2) with apparent Ki values of approximately 30 microM. The effect of the cations was competitive with Ca2+, while the interaction between the benzamil derivatives and Ca2+ appeared to be noncompetitive in nature. Both the divalent cations and benzamil also inhibited the rise in cytoplasmic Ca2+ as monitored by fura-2 fluorescence: these agents reduced peak cytosolic Ca2+ levels after N-formyl-methionyl-leucyl-phenylalanine stimulation to values seen in the absence of extracellular Ca2+. These results are compatible with the hypothesis that the influx of Ca2+ via Na+/Ca2+ exchange contributes to the transient elevation in intracellular free Ca2+. The polyvalent cations block the entry of critical Ca2+ ions by competing with Ca2+ for binding to the translocation site on the exchange carrier, while benzamil acts by lowering the maximal transport rate. These studies emphasize that Na+/Ca2+ exchange through its effects on cytoplasmic Ca2+ plays a major regulatory role in activation of the respiratory burst in chemotactic factor-stimulated neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号