首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607--3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95--106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na(+),K(+)-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3-PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.  相似文献   

3.
Recent work in plant immunity has shown that MOS4, a known intermediate in R protein mediated resistance, is a core member of the nuclear MOS4-associated complex (MAC). This complex is highly conserved in eukaryotes, as orthologous complexes known as the CDC5L-SNEVPrp19-Pso4 complex and the Nineteen complex (NTC) were previously identified in human and yeast, respectively. The involvement of these complexes in pre-mRNA splicing and spliceosome assembly suggests that the MAC probably has a similar function in plants. Double mutants of any two MAC components are lethal, whereas single mutants of the MAC core components mos4, Atcdc5, mac3, and prl1 are all viable and display pleiotropic defects. This suggests that while the MAC is required for some essential biological function such as splicing, individual MAC components are not crucial for complex functionality and likely have regulatory roles in other biological processes such as plant immunity and flowering time control. Future studies on MAC components in Arabidopsis will provide further insight into the regulatory mechanisms of the MAC on specific biological processes.  相似文献   

4.
5.
The G protein-coupled receptor (GPCR) Proteolysis Site (GPS) of cell-adhesion GPCRs and polycystic kidney disease (PKD) proteins constitutes a highly conserved autoproteolysis sequence, but its catalytic mechanism remains unknown. Here, we show that unexpectedly the ~40-residue GPS motif represents an integral part of a much larger ~320-residue domain that we termed GPCR-Autoproteolysis INducing (GAIN) domain. Crystal structures of GAIN domains from two distantly related cell-adhesion GPCRs revealed a conserved novel fold in which the GPS motif forms five β-strands that are tightly integrated into the overall GAIN domain. The GAIN domain is evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. Functionally, the GAIN domain is both necessary and sufficient for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyse peptide bond hydrolysis. Thus, the GAIN domain embodies a unique, evolutionarily ancient and widespread autoproteolytic fold whose function is likely relevant for GPCR signalling and for multiple human diseases.  相似文献   

6.
Complete and partial deletions of chromosome 5q are recurrent cytogenetic anomalies associated with aggressive myeloid malignancies. Earlier, we identified an approximately 1.5-Mb region of loss at 5q13.3 between the loci D5S672 and D5S620 in primary leukemic blasts. A leukemic cell line, ML3, is diploid for all of chromosome 5, except for an inversion-coupled translocation within the D5S672-D5S620 interval. Here, we report the development of a bacterial artificial chromosome (BAC) contig to define the breakpoint and the identification of a novel gene SSBP2, the target of disruption in ML3 cells. A preliminary evaluation of SSBP2 as a tumor suppressor gene in primary leukemic blasts and cell lines suggests that the remaining allele does not undergo intragenic mutations. SSBP2 is one of three members of a closely related, evolutionarily conserved, and ubiquitously expressed gene family. SSBP3 is the human ortholog of a chicken gene, CSDP, that encodes a sequence-specific single-stranded DNA-binding protein. SSBP3 localizes to chromosome 1p31.3, and the third member, SSBP4, maps to chromosome 19p13.1. Chromosomal localization and the putative single-stranded DNA-binding activity suggest that all three members of this family are capable of potential tumor suppressor activity by gene dosage or other epigenetic mechanisms.  相似文献   

7.
8.
Chen M  Xie K  Jiang F  Yi L  Dalbey RE 《Biological chemistry》2002,383(10):1565-1572
Membranes contain proteins that catalyze a variety of reactions, which lead to the selective permeability of the membrane. For membrane proteins to function as receptors, transporters, channels, and ATPases, they must be targeted to their correct membrane and inserted into the lipid bilayer. Recently, a new membrane component called YidC was discovered that mediates the insertion of proteins into membranes in bacteria. YidC homologs also exist in mitochondria and chloroplasts. Depletion of YidC from the cell interferes with the insertion of membrane proteins that insert both dependent and independent of the SecYEG/SecDFYajC machinery. YidC directly interacts with membrane proteins during the membrane protein insertion process and assists in the folding of the hydrophobic regions into the membrane bilayer. The chloroplast and bacterial YidC homologs are truly functional homologs because the chloroplast homolog Alb3 functionally complements the bacterial YidC depletion strain. The role of YidC in the membrane insertion pathway will be reviewed.  相似文献   

9.
10.
Protein phosphatase 4 (PP4) is an evolutionarily conserved and essential Ser/Thr phosphatase that regulates cell division, development and DNA repair in eukaryotes. The major form of PP4, present from yeast to human, is the PP4c-R2-R3 heterotrimeric complex. The R3 subunit is responsible for substrate-recognition via its EVH1 domain. In typical EVH1 domains, conserved phenylalanine, tyrosine and tryptophan residues form the specific recognition site for their target''s proline-rich sequences. Here, we identify novel binding partners of the EVH1 domain of the Drosophila R3 subunit, Falafel, and demonstrate that instead of binding to proline-rich sequences this EVH1 variant specifically recognizes atypical ligands, namely the FxxP and MxPP short linear consensus motifs. This interaction is dependent on an exclusively conserved leucine that replaces the phenylalanine invariant of all canonical EVH1 domains. We propose that the EVH1 domain of PP4 represents a new class of the EVH1 family that can accommodate low proline content sequences, such as the FxxP motif. Finally, our data implicate the conserved Smk-1 domain of Falafel in target-binding. These findings greatly enhance our understanding of the substrate-recognition mechanisms and function of PP4.  相似文献   

11.
12.
Different isoforms of a protein complex termed the apoptosis- and splicing-associated protein (ASAP) were isolated from HeLa cell extract. ASAP complexes are composed of the polypeptides SAP18 and RNPS1 and different isoforms of the Acinus protein. While Acinus had previously been implicated in apoptosis and was recently identified as a component of the spliceosome, RNPS1 has been described as a general activator of RNA processing. Addition of ASAP isoforms to in vitro splicing reactions inhibits RNA processing mediated by ASF/SF2, by SC35, or by RNPS1. Additionally, microinjection of ASAP complexes into mammalian cells resulted in acceleration of cell death. Importantly, after induction of apoptosis the ASAP complex disassembles. Taken together, our results suggest an important role for the ASAP complexes in linking RNA processing and apoptosis.  相似文献   

13.
Zhang C  Tang J  Xie J  Zhang H  Li Y  Zhang J  Verpooten D  He B  Cao Y 《FEBS letters》2008,582(2):171-176
ICP34.5, encoded by herpes simplex virus 1, is a protein phosphatase 1 (PP1) regulatory subunit that mediates dephosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha). However, the mechanism of its action remains poorly understood. Here, we show that amino acid substitutions in the arginine-rich motif have differential effects on ICP34.5 activity. The phenotypes parallel with viral protein synthesis and cytopathic effects in virus infected cells. Besides the consensus PP1 binding motif, the Arg-motif appears to enhance the interaction between ICP34.5 and PP1. These results suggest that concerted action between the PP1 binding domain and the effector domain of ICP34.5 is crucial for eIF2alpha dephosphorylation and viral protein synthesis.  相似文献   

14.
We previously identified mNAT1 (murine N-terminal acetyltransferase 1) as an embryonic gene that is expressed in the developing brain and subsequently down-regulated, in part, by the onset of N-methyl-d-aspartate (NMDA) receptor function. By searching the data base we discovered a second closely related gene, mNAT2. mNAT1 and mNAT2 are highly homologous to yeast NAT1, a gene known to regulate entry into the G0 phase of the cell cycle. However, in the absence of further characterization, including evidence that mammalian homologues of NAT1 encode functional acetyltransferases, the significance of this relationship has been unclear. Here we focus on mNAT1. Biochemical analysis demonstrated that mNAT1 and its evolutionarily conserved co-subunit, mARD1, assemble to form a functional acetyltransferase. Transfection of mammalian cells with mNAT1 and mARD1 followed by immunofluorescent staining revealed that these proteins localize to the cytoplasm in both overlapping and separate compartments. In situ hybridization demonstrated that throughout brain development mNAT1 and mARD1 are highly expressed in areas of cell division and migration and are down-regulated as neurons differentiate. Finally, mNAT1 and mARD1 are expressed in proliferating mouse P19 embryonic carcinoma cells; treatment of these cells with retinoic acid initiates exit from the cell cycle, neuronal differentiation, and down-regulation of mNAT1 and mARD1 as the NMOA receptor 1 gene is induced. The results provide the first direct evidence that vertebrate homologues of NAT1 and ARD1 form an evolutionarily conserved N-terminal acetyltransferase and suggest that expression and down-regulation of this enzyme complex plays an important role in the generation and differentiation of neurons.  相似文献   

15.
Telomere capping is the essential function of telomeres. To identify new genes involved in telomere capping, we carried out a genome-wide screen in Saccharomyces cerevisiae for suppressors of cdc13-1, an allele of the telomere-capping protein Cdc13. We report the identification of five novel suppressors, including the previously uncharacterized gene YML036W, which we name CGI121. Cgi121 is part of a conserved protein complex -- the KEOPS complex -- containing the protein kinase Bud32, the putative peptidase Kae1, and the uncharacterized protein Gon7. Deletion of CGI121 suppresses cdc13-1 via the dramatic reduction in ssDNA levels that accumulate in cdc13-1 cgi121 mutants. Deletion of BUD32 or other KEOPS components leads to short telomeres and a failure to add telomeres de novo to DNA double-strand breaks. Our results therefore indicate that the KEOPS complex promotes both telomere uncapping and telomere elongation.  相似文献   

16.
Chromatins from four evolutionarily remote species (insect, fish, amphibian and bird) were isolated, high-salt-extracted and extensively deproteinized to remove noncovalently associated proteins. A protein fraction resisting the extraction procedures was found firmly linked to DNA in all four chromatins. Two-dimensional tryptic peptide mapping revealed a remarkable evolutionary conservativeness of this protein component, suggesting an indispensable function for it in the nucleus.  相似文献   

17.
18.
A putative protease gene (tldD) was previously identified from studying tolerance of letD encoding the CcdB toxin of a toxin–antidote system of the F plasmid in Escherichia coli. While this gene is evolutionarily conserved in archaea and bacteria, the proteolytic activity of encoded proteins remained to be demonstrated experimentally. Here we studied Sso0660, an archaeal TldD homologue encoded in Sulfolobus solfataricus by overexpression of the recombinant protein and characterization of the purified enzyme. We found that the enzyme is active in degrading azocasein and FITC–BSA substrates. Protease inhibitor studies showed that EDTA and o-phenanthroline, two well-known metalloprotease inhibitors, either abolished completely or strongly inhibited the enzyme activity, and flame spectrometric analysis showed that a zinc ion is a cofactor of the protease. Furthermore, the protein forms disulfide bond via the Cys416 residue, yielding protein dimer that is the active form of the enzyme. These results establish for the first time that tidD genes encode zinc-containing proteases, classifying them as a family in the metalloprotease class.  相似文献   

19.
Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation reactions of photosynthesis in cyanobacteria, algae, and plants. The unusual redox reactions in PSII often lead to damage, degradation, and reassembly of this molecular machine. To identify novel assembly factors, high sensitivity proteomic analysis of PSII purified from the cyanobacterium Synechocystis sp. PCC 6803 was performed. This analysis identified six PSII-associated proteins that are encoded by an operon containing nine genes, slr0144 to slr0152. This operon encodes proteins that are not essential components of the PSII holocomplex but accumulate to high levels in pre-complexes lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. The operon contains genes with putative binding domains for chlorophylls and bilins, suggesting these proteins may function as a reservoir for cofactors needed during the PSII lifecycle. Genetic deletion of this operon shows that removal of these protein products does not alter photoautotrophic growth or PSII fluorescence properties. However, the deletion does result in decreased PSII-mediated oxygen evolution and an altered distribution of the S states of the catalytic manganese cluster. These data demonstrate that the proteins encoded by the genes in this operon are necessary for optimal function of PSII and function as accessory proteins during assembly of the PSII complex. Thus, we have named the products of the slr0144-slr0152 operon Pap (Photosystem II assembly proteins).  相似文献   

20.
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号