首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Changes in pH around the roots of young rape plants were studied using a nutrient film technique which allowed either part or all of the root system to be subjected to specific nutrient treatments. The rapidity and direction of change of pH was assessed by embedding absorbing roots in a thin layer of agar containing bromocresol purple. Measurements were also made with a pH microelectrode placed next to the roots. Phosphate-fed plants were deprived of phosphate when 14 days old. Patterns of pH changes round the deprived roots were the same as with phosphate-fed plants until the plants had been deprived of P for three days, when H ion efflux started in the terminal portions of the roots. The lengths of root producing acid and amounts of H ion both increased as the plants became more P deficient. Both P fed and P deprived roots produced HCO3 ions but the net amount of HCO3 ion produced by the P deficient roots fell as did nitrate uptake rates. Cation-anion balances measured at the end of the experiment showed that uptake of all anions and K decreased in the P deprived plants but uptake of Ca and Mg were little altered. This resulted in a smaller ratio of anions to cations absorbed which was reflected in the reduced HCO3 ion efflux.  相似文献   

2.
Levels of nitrate reductase activity (N.R.A.) were measured in shoots and roots of P sufficient and P deficient rape plants and changes in N.R.A. examined in relation to the onset of H ion efflux from the roots. Rates of xylem exudation were measured and the sap analysed for nitrate, amino-N and phosphate content. The optimum concentration of phosphate in the leaves for N.R.A. was about 0.7%. Both high and low concentrations of phosphate within the leaves inhibited N.R.A in those leaves. This inhibition of N.R.A led to the accumulation of nitrate in the older parts of the shoots of P sufficient plants. Less accumulation of nitrate occurred in the P deficient plants since nitrate uptake by the plants decreased before any fall in N.R.A. Xylem exudation rates halved within 18 hours of depriving the plants of phosphate, and, since the composition of the sap remained constant, this indicated a reduced flux of nitrate into the xylem. The rate of xylem exudation continued to fall and by the end of the experiment was approximately one tenth of the rate in the P sufficient plants. The onset of H ion efflux from the terminal portions of the root preceded any effect on N.R.A by 2 days.  相似文献   

3.
Plant analysis can diagnose boron (B) deficiency when the standards used have been properly developed by establishing that a close relationship exists between B concentration in a plant part and its physiological function. The purpose of the present study was to demonstrate the importance of choosing the growing immature leaves for B deficiency diagnosis and for establishing critical B concentrations for the diagnosis of B deficiency in oilseed rape (Brassica napus). In Experiment 1, the plants were subject to seven levels of B supply using programmed nutrient addition, for the estimation of critical B concentrations in plant parts for shoot growth. In Experiment 2, the plants were treated with two levels of B supply in solution: 10 (+B) and 0 (-B) M B, for the estimation of functional B requirements for leaf elongation. The results showed that critical B concentrations varied amongst the plant parts sampled and decreased with leaf age. As B taken up by roots is largely phloem-immobile, B concentrations in mature leaves are physiologically irrelevant to plant B status at the time of sampling, giving rise to a significant over- or underestimation of the B requirement for plant growth. By contrast, a growing, immature leaf, in this case the youngest open leaf (YOL), was the most reliable plant part for B deficiency diagnosis. Critical B concentrations developed from both methods were comparable-i.e. 10–14 mg B kg–1 dry matter in the YOL at vegetative growth stages up to stem elongation.  相似文献   

4.
The growth and flowering response of a cold-requiring cauliflower (Brassica oleracea var. botrytis cv. 60 day) to a range of temperatures under 10 h photoperiod and to growth regulator application were investigated. Endogenous gibberellin A1(GA1) concentrations were also assessed under these treatments. Flowering and growth of the inflorescence stalk were correlated with plant developmental stage at the time of a vernalizing cold treatment. Temperature and its duration also affected flowering and inflorescence development. The most effective temperature for inflorescence induction was 10 °C. Flowering did not occur in non-vernalized plants (25 °C) even though they had been treated with GA3. Application of GA3 promoted inflorescence stalk elongation greatly in vernalized plants (10 °C), but less so in partially vernalized plants (15 °C or 20 °C). Paclobutrazol (PP333) sprayed at the 8–9 leaf stage significantly suppressed inflorescence stalk length and slightly delayed flower bud formation and anthesis. Vernalization at 10 °C increased endogenous GA1 content in both leaves and the inflorescence stalk irrespective of GA3 or PP333 treatment. Application of GA3 tended to increase GA1 levels, while PP333 significantly reduce GA1, both irrespective of vernalization. Vernalization is an important factor for flowering, but not curd formation in this cauliflower cv. 60 day and GA1 is likely a causal factor in inflorescence stalk elongation.  相似文献   

5.
In order to monitor the trans labilization of cisplatin at physiological pH we have prepared the complex cis-[PtCl2(13CH3NH2)2] and studied its interactions with excess glutathione in aqueous solution at neutral pH by two-dimensional [1H,13C] heteronuclear single-quantum correlation (HSQC) NMR spectroscopy. [1H,13C] HSQC spectroscopy is a good method for following the release of 13CH3NH2 but is not so good for characterizing the Pt species in solution. In the reaction of cisplatin with glutathione, Pt–S bonds are formed and Pt–NH3 bonds are broken. The best technique for following the formation of Pt–S bonds of cisplatin is by UV spectroscopy. [1H,13C] HSQC spectroscopy is the best method for following the breaking of the Pt–N bonds. [1H,15N] HSQC spectroscopy is the best method for characterizing the different species in solution. However, the intensity of the peaks in the 15NH3–Pt–S region, in [1H,15N] HSQC, reflects a balance between the formation of Pt–S bonds, which increases the signal intensity, and the trans labilization, which decreases the signal intensity. [1H,15N] HSQC spectroscopy and [1H,13C] HSQC spectroscopy are complementary techniques that should be used in conjunction in order to obtain the most accurate information on the interaction of platinum complexes with sulfur-containing ligands.  相似文献   

6.
We investigated the molecular mechanisms by which treatment of the human osteoblast-like cell line MG-63 with interleukin 1beta (IL-1) and/or fibroblast growth factor 1 (FGF-1) elicited prostaglandin biosynthesis. IL-1 induced a 5-fold increase in PGE(2) production compared to controls. While treatment with FGF-1 alone did not affect PGE(2) biosynthesis, it enhanced the formation of PGE(2) by IL-1 by an additional 3- to 5-fold. IL-1-induced PGE(2) biosynthesis accompanied increases in steady-state levels of mRNAs encoding cPLA(2) (10- to 15-fold) and PGHS-2 (>3-fold) and concomitant increases in cPLA(2) protein (>3-fold) and PGHS-2 protein (>1. 5-fold). FGF-1 treatment did not affect PGHS-2 gene expression, but enhanced the effect of IL-1 on PGHS-2 expression by an additional 2- to 3-fold. FGF-1 alone enhanced cPLA(2) expression (5-fold), and the combined effects of FGF-1 and IL-1 on cPLA(2) expression were additive. There was no measurable effect of either agonist on PGHS-1 expression. We also discovered that induction of PGE(2) biosynthesis in response to IL-1 or IL-1/FGF-1 was affected by the density of MG-63 cells in culture. Subconfluent cultures displayed a 3- to 10-fold greater response to IL-1 or IL-1/FGF-1 than confluent cultures. The decreased PGE(2) induction by IL-1 in confluent cultures was associated with reduced IL-1 receptor expression. We conclude that the signaling pathways resulting in PGE(2) biosynthesis in response to proinflammatory agents like IL-1 are subject to complex regulation by additional soluble mediators as well as cell-cell or cell-extracellular matrix interactions.  相似文献   

7.
Venom from the sea anemone, Heteractis magnifica, has multiple biological effects including, cytotoxic, cytolytic and hemolytic activities. In this study, cytotoxicity induced by H. magnifica venom was investigated using the crystal violet assay on human breast cancer T47D and MCF7 cell lines and normal human breast 184B5 cell line. Apoptosis was also assayed via Annexin V-flourescein isothiocyanate and propidium iodide (PI) staining followed by flow cytometric analysis. Cell cycle progression and mitochondria membrane potential were studied via flow cytometry following PI and JC-1 staining respectively. H. magnifica venom induced significant reductions in viable cell numbers and increases in apoptosis in T47D and MCF7 in dose-dependent manners. A significant apoptosis-related increase in the sub G1 peak of the cell cycle in both breast cancer cell lines was also observed. Moreover, treatment by venom cleaved caspase-8, caspase-9, and activated caspase-3. Overall, H. magnifica venom was highly cytotoxic to T47D and MCF7 human breast cancer cells, and the phenomenon could be the killing phenomenon via the death receptor-mediated and the mitochondria-mediated apoptotic pathways. Consequently, H. magnifica venom has potential for the development of a breast cancer therapeutic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号