首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fish stocks of Lakes Kyoga and Victoria have changed since Nile perch, Lates niloticus (L.), was introduced, and this is reflected in the prey ingested by the predator. Initially, haplochromine cichlids constituted the main prey of most sizes of Nile perch. As the stocks of these have declined, Caridina nilotica (Roux) and Anisopteran nymphs have become the dominant food of the juveniles, while Rastrineobola argentea (Pellegrin), juvenile Nile perch and Oreochromis niloticus (L.) have become the main food of larger Nile perch. Apart from R. argentea , most of the native fish species of these lakes have disappeared. The stocks of Nile perch in Lake Kyoga, to which it was introduced earlier than to Lake Victoria, have declined after dominating the fishery since 1965. and have been superseded by O. niloricus . an introduced herbivore. Similar changes are now occurring in Lake Victoria. The Nile perch might not maintain the high yield realized in the two lakes when haplochromines were abundant. It is therefore necessary to exercise caution with high and long-term investments aimed specifically at developing the Nile perch fishery.  相似文献   

2.
Synopsis There has been a decline, and in some cases an almost total disappearance, of many of the native fish species of lakes Victoria and Kyoga in East Africa since the development of the fisheries of these lakes was initiated at the beginning of this century. The Nile perch, Lates niloticus, a large, voracious predator which was introduced into these lakes about the middle of the century along with several tilapiine species, is thought to have caused the reduction in the stocks of several species. But overfishing and competition between different species also appear to have contributed to this decline. By the time the Nile perch had become well established, stocks of the native tilapiine species had already been reduced by overfishing. The Labeo victorianus fishery had also deteriorated following intensive gillnetting of gravid individuals on breeding migrations. L. niloticus is, however, capable of preying on the species which haven been overfished and could have prevented their stocks from recovering from overfishing. L. niloticus is also directly responsible for the decline in populations of haplochromine cichlids which were abundant in these lakes before the Nile perch became established. Even without predation by Nile perch, it has been shown that the haplochromine cichlids could not have withstood heavy commercial exploitation if a trawl fishery had been established throughout Lake Victoria. Their utilisation for human food has also posed some problems. The abundance of the native tilapiine species may also have been reduced through competition with introduced species which have similar ecological requirements. At present, the Nile perch and one of the introduced tilapiine species, Oreochromis niloticus, form the basis of the fisheries of lakes Victoria and Kyoga.Invited editorial  相似文献   

3.
The Lake Victoria ecosystem has experienced changes associated with fishing levels, a rise in lake level in the 1960s, fish introductions, and human activities in the drainage basin. Following the fish introductions of the 1950s and early 1960s, Oreochromis niloticus has become the most abundant and commercially important species among the tilapiines, and the only species which has managed to co-exist with the Nile perch in Lakes Victoria and Kyoga. There is, however, little published information on the biology and ecology of the specie in the new habitats. It has therefore been found necessary to initiate studies on the characteristics of O. niloticus in Lake Victoria.  相似文献   

4.
The combined effects of lack of effective management, over-exploitation with destructive fishing gear and interspecific competition, particularly among tilapiines have had profound effects on the fish stocks of lakes Victoria and Kyoga. It has been proposed that these have been more important in the decline of the indigenous fisheries than predation or competition from Nile perch.  相似文献   

5.
Synopsis Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus, were originally transplanted from Lake Albert in western Uganda to the African Great Lakes, Lake Victoria and Lake Kyoga, where they are partially implicated in reduction of the fish species diversity. Lake Albert is facing multiple environmental changes, including declining fish species diversity, hyper-eutrophication, hypoxia, and reduced fish catches. To examine the role of Nile perch and Nile tilapia in the food web in their native Lake Albert, we estimated their diets using stable nitrogen and carbon isotopes. In Lake Albert, the tilapiine congeners (closely related species), Tilapia zillii, Oreochromis leucostictus, and Sarethorodon galilaeus, and the centropomid Nile perch congener, Lates macrophthalmus, have narrower diet breath in the presence of the native O. niloticus and L. niloticus. A computerized parameter search of dietary items for five commercially important fish species (Hydrocynus forskahlii, Bagrus bayad, L. niloticus, Alestes baremose and Brycinus nurse) was completed using a static isotopic mixing model. The outcome of the simulation for most fish species compared favorably to previously published stomach contents data for the Lake Albert fishes dating back to 1928, demonstrating agreement between stable isotope values and analyses of stomach contents. While there were some indications of changes in the diets of L. niloticus and A. baremose diets over the past 20 years in parallel with other changes in the lake, for the most part, food web structure in this lake remained stable since 1928. The Lake Albert fish assemblage provides insight into the invasion success of L. niloticus and O. niloticus.  相似文献   

6.
The piscivorous Nile perch was introduced into Lake Victoria some 30 years ago, since when it has completely transformed the fishing industry and the species composition of the fish fauna of the lake. The original multispecies fishery, based mostly on cichlids (haplochromines, tilapias), cyprinids ( Barbus, Labeo, Rastrineobola ) and siluroids ( Bagrus, Clarias, Synodontis, Schilbe ), has changed dramatically to one based on three species: the introduced Nile perch, the cyprinids, Rastrineobola argenrea (Pellegrin), and the introduced Nile tilapia, Oreochromis niloticus (Linnaeus).
Within 25 years of its introduction the Nile perch became ubiquitous and now occurs in virtually every habitat with the exception of swamps and affluent rivers. It has preyed on all other species with profound effects, especially on the stocks of haplochromines. These originally comprised 80% of the total fish biomass in Lake Victoria, but have now decreased to less than 1% offish catches from the Kenyan waters of the lake. The fishermen of Lake Victoria have adjusted to this ecological crisis by using large-meshed nets to catch Nile perch, which has become the most important commercial species. For the first time in the history of Lake Victoria, fish fillets are now being exported to several overseas countries: the fillets are all from Nile perch.  相似文献   

7.
Synopsis The introduction of the Nile perch into Lake Victoria has dramatically altered the fishery in that lake and contributed to the decline of the fishery for indigenous tilapias. One sector of the fishery in Lake Victoria has benefitted from the Nile perch introduction, although catches have declined in recent years. Inefficient enforcement of fisheries regulations has had a detrimental effect on indigenous species but may also have contributed to the recent decline in Nile perch catches. Fisheries development plans have tended to favour capital-intensive fisheries and to ignore small scale subsistence fisheries. A case study at Wichlum Beach on the Kenyan shores of Lake Victoria has revealed the efficiency of traditional fishing and fish drying methods as well as the high ecological costs of the practice of kiln-drying Nile perch. Forty-five tons of firewood are used per month at Wichlum Beach alone for kiln-drying perch. The increased economic viability of the fishery has attracted professionals into the industry and resulted in the development of an export-oriented trade. The Yala Swamp adjacent to Lake Victoria has been extensively drained as part of a large land reclamation scheme and more draining is planned. Increased environmental awareness in Kenya, and Kenya's membership in the Convention on Wetlands of International Importance, has resulted in a critical review of these plans.  相似文献   

8.
The introduction of invasive Nile tilapia (Oreochromis niloticus), and the rapacious predator Nile perch (Lates niloticus), into Lake Victoria resulted in a decline in population sizes, genetic diversity and even extirpation of native species which were previously the mainstay of local fisheries. However, remnant populations of native fish species, including tilapia, still persist in satellite lakes around Lake Victoria where they may coexist with O. niloticus. In this study we assessed population genetic structure, diversity, and integrity of the native critically endangered Singidia tilapia (O. esculentus) in its refugial populations in the Yala swamp, Kenya, and contrasted this diversity with populations of the invasive tilapia O. niloticus in satellite lakes (Kanyaboli, Namboyo and Sare) and Lake Victoria. Based on mtDNA control region sequences and eight nuclear microsatellite loci, we did not detect any mtDNA introgression between the native and the invasive species in Lakes Kanyaboli and Namboyo, but did find low levels of nuclear admixture, primarily from O. niloticus to O. esculentus. Some genetic signal of O. esculentus in O. niloticus was found in Lake Sare, where O. esculentus is not found, suggesting it has recently been extirpated by the O. niloticus invasion. In both species, populations in the satellite lakes are significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles. For O. niloticus, genetic diversity in satellite lakes was similar to that found in Lake Victoria. Our data imply a low frequency of immigration exchange between the two populations of O. esculentus and we suggest that the populations of this endangered species and important fisheries resource should be conserved separately in Lakes Kanyaboli and Namboyo and with high priority.  相似文献   

9.
Inland fishery ecosystems in Africa are characterized by patterns of overexploitation, environmental degradation and exotic species introductions. Ecological complexity and diversity of aquatic habitats dictate that fishes in general are not evenly distributed in a water body. However, fisheries management regimes tend to ignore this basic principle, assume generalized conditions in a water body, and focus more on ‘desired’ objectives such as maximizing catch. The result is to disregard fish habitat boundaries and anthropogenic influences from the catchment that influence fish production. Overexploitation and environmental degradation disrupt sustainable socioeconomic benefits from the fisheries, create uncertainty among investors, but leave some managers calling for more information with the expectation that the fisheries will recover with time. Open access to the fisheries and full control of fishing effort remain challenges for managers. Exotic species introductions and fish farming can increase production, but such interventions require firm commitment to sound ecological principles and strict enforcement of recommended conservation and co‐management measures in capture fisheries. The general tendency to downplay fishing effort issues, other ecosystem values and functions or rely on temperate fisheries models until a new cycle of overexploitation emerges, characterizes many management patterns in inland fisheries. Aquaculture is not an option to challenges in capture fisheries management. Aquaculture should be developed to increase fish production but even this practice may have negative environmental impacts depending on practice and scale. Decades of information on Lake Victoria fisheries trends and aquaculture development did not stop the collapse of native fisheries. The successfully introduced Nile perch (Lates niloticus) has shown signs of overexploitation and aquaculture has again been considered as the option. By reviewing significant trends associated with Nile perch and its feasibility in aquaculture this paper uses Lake Victoria to illustrate ‘special interest management’ targeting selected species of fish rather than the fisheries.  相似文献   

10.
Although the introduction of Nile perch, Lates niloticus , to Lake Victoria has received intense global attention, especially in relation to its impact on endemic cichlid species and on fishery yields, fundamental information on its taxonomy and population genetics is lacking. Most importantly, the introduced fish originated from two lakes (Lakes Albert and Turkana) containing three Lates species, and it has never been entirely clear which of these became established in Lake Victoria, or indeed whether the Lake Victoria population is derived from hybridization between Lates species. In addition, genetic drift caused by the relatively small founder population (≈ 400), the initially slow population increase followed by a period of explosive population growth, and selection pressures in the new environment may have resulted in substantial genetic changes. Allozyme data indicated that the introduced Nile perch of Lake Victoria were mainly L. niloticus from Lake Albert, although maximum likelihood estimates of stock contributions (GSI) suggested the presence of L. macrophthalmus. In contrast, introduced Nile perch in adjacent smaller lakes (Lakes Kyoga and Nabugabo) appeared to be entirely L. niloticus . The effect of the introductions on allozyme diversity varied among lakes and appeared to be uncorrelated to the number of fish introduced.  相似文献   

11.
Synopsis The Lake Victoria fish fauna included an endemic cichlid flock of more than 300 species. To boost fisheries, Nile perch (Lates sp.) was introduced into the lake in the 1950s. In the early 1980s an explosive increase of this predator was observed. Simultaneously, catches of haplochromines decreased. This paper describes the species composition of haplochromines in a research area in the Mwanza Gulf of Lake Victoria prior to the Nile perch upsurge. The decline of the haplochromines as a group and the decline of the number of species in various habitats in the Mwanza Gulf was monitored between 1979 and 1990. Of the 123+ species originally caught at a series of sampling stations ca. 80 had disappeared from the catches after 1986. In deepwater regions and in sub-littoral regions haplochromine catches decreased to virtually zero after the Nile perch boom. Haplochromines were still caught in the littoral regions where Nile perch densities were lower. However, a considerable decrease of species occurred in these regions too. It is expected that a remnant of the original haplochromine fauna will survive in the littoral region of the lake. Extrapolation of the data of the Mwanza Gulf to the entire lake would imply that approximately 200 of the 300+ endemic haplochromine species have already disappeared, or are threatened with extinction. Although fishing had an impact on the haplochromine stocks, the main cause of their decline was predation by Nile perch. The speed of decline differed between species and appeared to depend on their abundance and size, and on the degree of habitat overlap with Nile perch. Since the Nile perch upsurge, the food web of Lake Victoria has changed considerably and the total yield of the fishery has increased three to four times. Dramatic declines of native species have also been observed in other lakes as a result of the introduction of alien predators. However, such data concern less speciose communities and, in most cases, the actual process of extinction has not been monitored.  相似文献   

12.
13.
Lates niloticus is not native to Lake Victoria but was introduced during or shortly before 1960. It remained relatively uncommon until 1975, when the number in the Nyanza Gulf began to increase impressively, the estimated catch rising over 100-fold between 1978 and 1982. Originally Lates was piscivorous, its diet reflecting the composition of the native fish community. The present investigation has revealed that its diet is now almost entirely comprised of Caridina nilotica , a small microphagous prawn, and juvenile Lates. Native fish species, except for the small pelagic Rastrineobola argenteus , are very rarely consumed. This change in diet is a result of the shattering impact Lates predation has had on the native fishes, which have been virtually wiped out. The original community, which was dominated by several hundred haplochromine species and the catfishes Clarias mossambicus and Bagrus docmac which preyed upon them, and included two endemic tilapiine cichlids and 38 species of non-cichlids, no longer exists. It has been replaced by a community dominated by Lates which now accounts for well over 80% of the fish biomass in the Nyanza Gulf and very nearly 100% in the study area. The only other species regularly encountered were Oreochromis niloticus , an introduced tilapiine, and Rastrineobola argenteus , a native zooplanktivore.  相似文献   

14.
During the second half of the last century, the Lake Victoria ecosystem has undergone drastic ecological changes. Most notable has been the decline in the populations of many endemic cichlid fishes. The lake has lost nearly 200 haplochromines and one tilapiine, Oreochromis esculentus. The above changes have been attributed to effects of species stocking and, in particular, from predation pressure by the introduced Nile perch, Lates niloticus. Other factors that have led to the decline of the endemic species include intensive non-selective fishing, extreme changes in the drainage basin, increased eutrophication, and the invasion of the lake by the water hyacinth, Eichhornia crassipes. However, the remnants of some species that had disappeared from Lake Victoria occur abundantly in the Yala Swamp lakes (Kanyaboli, Sare and Namboyo). This paper discusses the biodiversity of the swamp and the three lakes and gives suggestions for their conservation.  相似文献   

15.
This study looked for evidence of trophic shifts in the diet of two predatory catfishes ( Bagrus docmac and Schilbe intermedius ) following the establishment of introduced Nile perch ( Lates niloticus ) into lakes of the Lake Victoria basin. Bagrus docmac exhibited a shift from a primarily piscivorous diet dominated by haplochromine cichlids to a broader diet that included a significant proportion of invertebrates and the cyprinid fish, Rastrineobola argentea , which became abundant following depletion of the haplochromines. Schilbe intermedius exhibited a trophic shift from a piscivorous diet dominated by haplochromines to an insectivorous diet. The flexibility in diet exhibited by these two catfishes may have permitted these species to persist, albeit in reduced numbers, subsequent to the introduction of Nile perch and may facilitate resurgence as fishing pressure reduces numbers of large Nile perch.  相似文献   

16.
Nile tilapia (Oreochromis niloticus) is one of the most widespread invasive fish species, and this species has successfully established populations in the major rivers of Guangdong Province, China. Field surveys and manipulative experiments were conducted to assess the impacts of Nile tilapia on fisheries. We determined that the increase of Nile tilapia in these rivers not only affects the CPUE (catch-per-unit-per-effort) of the fish community and native fish species but also reduces the income of fishermen. In the manipulative experiments, we observed that the growth of native mud carp decreased in the presence of Nile tilapia. Our results suggest that the invasion of Nile tilapia negatively affected the fishery economy and native fish species, and suitable control measurements should be taken.  相似文献   

17.
The introduction of the predatory Nile perch, Lates niloticus, into the Lake Victoria basin coincided with a dramatic decline in fish species richness and diversity. This study focused on interactions between Nile perch and indigenous fishes in Lake Nabugabo, Uganda, a small satellite lake of Lake Victoria. We evaluated how the foraging impact of juvenile Nile perch on prey fishes varied with the size of the predator. We also evaluated the role of wetland ecotones in minimizing interaction between Nile perch and indigenous fishes. Wetland ecotones in Lake Nabugabo were characterized by complex structure (e.g., dense vegetation) and lower dissolved oxygen levels than non-wetland (exposed) areas. Nile perch (8.6–42.2cm, TL) were 3.7 times more abundant in offshore exposed areas than in inshore areas near wetland ecotones, and the proportion of Nile perch using wetland and exposed areas was independent of their body size. However, species richness was higher in waters at wetland ecotones than in exposed areas. Nile perch (5–35cm, TL) exhibited a shift in diet at approximately 30cm TL from feeding primarily on invertebrates to piscivory. Although the shift to piscivory occurred at approximately the same body size for Nile perch from both wetland and exposed habitats, the shift to piscivory was less abrupt in Nile perch captured near wetland ecotones. Nile perch from wetland areas consumed a greater diversity and a larger percentage of fish prey than those from exposed sites. However, the low abundance of Nile perch in wetland ecotones suggested that interaction between predator and prey in these areas is much reduced.  相似文献   

18.
Haplochromine cichlids used to be the main prey of the introduced Nile perch, Lates niloticus, in Lake Victoria. After depletion of the haplochromine stocks at the end of the 1980s, Nile perch shifted to the shrimp Caridina nilotica and to a lesser degree to its own young and the cyprinid Rastrineobola argentea. In the present study, we investigated the Nile perch diet in the northern Mwanza Gulf after resurgence of some of the haplochromine species and compared it with data collected in the same area in 1988/1989. It became clear that haplochromines are again the major prey of Nile perch. The dietary shift from invertebrate feeding (shrimps) to feeding on fish (haplochromine cichlids) occurs at a smaller size than it did when Nile perch were taking primarily dagaa and juvenile Nile perch as their fish prey. The apparent preference for haplochromines as prey has reduced the degree of cannibalism considerably, which may have a positive impact on Nile perch recruitment.  相似文献   

19.
Four different management regimes were identified in small water bodies in Laos: open-access fisheries, both with and without stocking of exotics (mainly Nile tilapia Oreochromis niloticus ); community fisheries with restricted access and regular stocking; and fisheries rented out to corporate entities, based on indigenous stocks only. These regimes represent all possible combinations of the two management measures, access (open/restricted) and stocking of exotic species (no/yes) and a test fishing experiment assessed their effects on stock abundance, richness and diversity. The combination of access restrictions and stocking had a strong positive effect on total standing stocks. Stocks of indigenous fish were significantly increased by access restrictions, while stocking of exotics had no effect on indigenous standing stocks. Community fisheries targeted large sizes of exotic species while reducing the exploitation of smaller size groups, which accounted for much of the indigenous stocks. This suggests that stocking can promote active effort regulation and reduce the exploitation of natural stocks. Data on yields and effort were too limited to allow the use of inferential statistics, but indicated that community fisheries were exploited with much lower effort and gave lower yields than open access fisheries, while providing higher returns to fishing effort. This suggests that active management is effective in increasing standing stocks and the efficiency of exploitation, but does not necessarily increase yields unless optimal management regimes can be identified and implemented by the management institutions. No significant effects on wild stock richness or diversity were detected in the test fishing experiment, but wide confidence limits indicated a low statistical power of the test and therefore no definitive conclusions could be drawn.  相似文献   

20.
Nile tilapia Oreochromis niloticus is now the most abundant and commercially important tilapiine in Lake Victoria. From the total of 1 512 fish sampled from commercial gill net fisheries during 2014 and 2015, 809 (54%) were males and 672 (44%) were females, giving an overall sex ratio of 1.20 males: 1.00 females. The mean (± SE) length and weight for all fish were 28.7 (±0.1) cm TL and 506.6 (±7.1) g, respectively. The slope b of the length-weight relationship was 2.98, 3.01 3.01, for males, females, and combined sexes, respectively. The relative condition factor was 1.02 for males and 1.04 for females with little variation across the months of sampling. The length at 50% maturity was estimated as 31.0 cm TL for male Nile tilapia and 26.0 cm TL for females. Sixty percent of the fish in the commercial catches surveyed were below 30 cm TL. Comparisons with earlier studies in this system suggest an overall decline in size at maturity over the past 30 years, which may reflect intense fishing pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号