首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To investigate the splitting of the inorganic phosphate (Pi) peak during exercise and recovery, a time-resolved 31phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) technique was used. Seven healthy young sedentary male subjects performed knee flexion exercise in the prone position inside a 2.1-T magnet, with the surface coil for 31P-MRS being placed on the biceps femoris muscle. After a 1-min warm-up without loading, the exercise intensity was increased by 0.41 W at 15-s intervals until exhaustion, followed by a 5-min recovery period. The 31P-MRS were recorded every 5 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of the Pi and phosphocreatine peaks were performed. Five of the seven subjects showed two distinct Pi peaks during exercise, suggesting two different pH distributions in exercising muscle (high pH and low pH region). In these five subjects, the high-pH increased rapidly just after the onset of exercise, while the low-pH peak increased gradually approximately 60 s after the onset of exercise. During recovery, the disappearance of the high-pH peak was more rapid than that of the low-pH peak. These findings suggest that our method 31P-MRS provides a simple approach for studying the kinetics of the Pi peak and intramuscular pH during exercise and recovery.  相似文献   

2.
Abstract: The Pi peak in a 31P NMR spectrum of the brain can be deconvoluted into six separate Lorentzian peaks with the same linewidth as that of the phosphocreatine peak in the spectrum. In an earlier communication we showed that the six Pi peaks in normal brain represent two extracellular and four intracellular compartments. In that report we have identified the first of the extracellular peaks by marking plasma with infused Pi, thereby substantially increasing the amplitude of the single peak at pH 7.35. 2-Deoxyglucose-6-phosphate (2-DG-6-P) was placed in the brain interstitial space by microdialysis. The resulting 2-DG-6-P peak was deconvoluted into three separate peaks. The chemical shift of the principle 2-DG-6-P peak gave a calculated pH of 7.24 ± 0.02 for interstitial fluid pH, a value that agreed well with the pH of the second extracellular Pi peak at pH 7.25 ± 0.01. We identified the intracellular compartments by selectively stressing cellular energy metabolism in three of the four intracellular spaces. A seizure-producing chemical, flurothyl, was used to activate the neuron, thereby causing a demand for energy that could not be completely met by oxidative phosphorylation alone. The resulting loss of high-energy phosphate reserves caused a significant increase in intracellular Pi only in those cells associated with the Pi peak at pH 6.95 ± 0.01. This suggests that this compartment represents the neuron. Ammonia is detoxified in the astrocyte (glutamine synthetase) by incorporating it into glutamine, a process that requires large amounts of glucose and ATP. The intraarterial infusion of ammonium acetate into the brain stressed astrocyte energy metabolism resulting in an increase in the Pi of the cells at pH of 7.05 ± 0.01 and 7.15 ± 0.02. This finding, coupled with our observation that these same cells take up infused Pi probably via the astrocyte end-foot processes, lead us to conclude that these two compartments represent two different types of astrocytes, probably protoplasmic and fibrous, respectively. As a result of this study, we now believe the brain contains four extracellular and four intracellular compartments.  相似文献   

3.
Abstract: In vivo 31P magnetic resonance spectra of 16 isolated dog brains were studied by using a 9.4-T wide-bore superconducting magnet. The observed Pi peak had an irregular shape, which implied that it represented more than one single homogeneous pool of Pi. To evaluate our ability to discriminate between single and multiple peaks and determine peak areas, we designed studies of simulated 31Pi spectra with the signal-to-noise (S/N) ratios ranging from ∞ to 4.4 with reference to the simulated Pi peak. For the analysis we used computer programs with a linear prediction algorithm (NMR-Fit) and a Marquardt–Levenberg nonlinear curve-fit algorithm (Peak-Fit). When the simulated data had very high S/N levels, both methods located the peak centers precisely; however, the Marquardt-Levenberg algorithm (M-L algorithm) was the more reliable at low S/N levels. The linear prediction method was poor at determining peak areas; at comparable S/N levels, the M-L algorithm determined all peak areas relatively accurately. Application of the M-L algorithm to the individual experimental in vivo dog brain data resolved the Pi peak into seven or more separate components. A composite spectrum obtained by averaging all spectral data from six of the brains with normal O2 utilization was fitted using the M-L algorithm. The results suggested that there were eight significant peaks with the following chemical shifts: 4.07, 4.29, 4.45, 4.62, 4.75, 4.84, 4.99, and 5.17 parts per million (ppm). Although linear prediction demonstrated the presence of only three peaks, all corresponded to values obtained using the M-L algorithm. The peak indicating a compartment at 5.17 ppm (pH 7.34) was assigned to venous pH on the basis of direct simultaneous electrode-based measurements. On the basis of earlier electrode studies of brain compartmental pH, the peaks at 4.99 ppm (pH 7.16) and 4.84 ppm (pH 7.04) were thought to represent interstitial fluid and the astrocyte cytoplasm, respectively.  相似文献   

4.
NMR is useful for both 1H-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We undertook to combine these two merits of NMR for in vivo characterization of living rat heart in wide bore (9 cm) superconducting magnet under high magnetic field (6.4 Tesla). Spatial resolution of 1H-MRI attained 0.1 mm by spin warp method. Then, depth-selected, EKG-gated 31P-MRS was performed, adjusting the detection area to cover the heart that was identified by the preceding 1H-MRI. Three evidences that 31P-SMR signal chiefly originated from the heart without cross talk of adjacent organs indicated that combination of 1H-MRI and in vivo 31P-MRS under high magnetic field in whole animal is promising for more accurate evaluation of cardiac muscle metabolism.  相似文献   

5.
The novel phosphorylated pyrrolidine diethyl(2-methylpyrrolidin-2-yl)phosphonate (DEPMPH) was evaluated as a (31)P NMR probe of the pH changes associated with ischemia/reperfusion of rat isolated hearts and livers. In vitro titration curves indicated that DEPMPH exhibited a 4-fold larger amplitude of chemical shift variation than inorganic phosphate yielding an enhanced NMR sensitivity in the pH range of 5.0-7.5 that allowed us to assess pH variations of less than 0.1 pH units. At the non-toxic concentration of 5 mm, DEPMPH distributed into external and cytosolic compartments in both normoxic organs, as assessed by the appearance of two resonance peaks. An additional peak was observed in normoxic and ischemic livers, assigned to DEPMPH in acidic vesicles (pH 5.3-5.6). During severe myocardial ischemia, a third peak corresponding to DEPMPH located in ventricular and atrial cavities appeared (pH 6.9). Mass spectrometry and NMR analyses of perchloric extracts showed that no significant metabolism of DEPMPH occurred in the ischemic liver. Reperfusion with plain buffer resulted in a rapid washout of DEPMPH from both organs. It was concluded that the highly pH-sensitive DEPMPH could be of great interest in noninvasive ex vivo studies of pH gradients that may be involved in many pathological processes.  相似文献   

6.

Background

Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism.

Methodology/Principal Findings

We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition.

Conclusions/Significance

Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.  相似文献   

7.
To investigate mechanisms of development in ischemic myocardial injury, intracellular pH and high energy phosphates in perfused guinea-pig hearts were monitored by 31P-MRS. Intracellular ATP content decreased to 1.2% and 26.4% of control during 60 minutes global ischemia, respectively with and without preischemic administration of isoproterenol. Intracellular pH declined to 6.48 and 6.03 respectively. Postischemic cardiac function was severely impaired by isoproterenol. ATP breakdown had little influence on intracellular pH in ischemic hearts. It was verified that inotropic agents can progress ischemic myocardial injury, and that contractile recovery is more correlated with the residual ATP level than intracellular pH.  相似文献   

8.
Abstract: The inorganic phosphate (Pi) NMR peak in brain has an irregular shape, which suggests that it represents more than a single homogeneous pool of Pi. To test the ability of the Marquardt-Levenberg (M-L) nonlinear curve fit algorithm software (Peak-Fit) to separate multiple peaks, locate peak centers, and estimate peak heights, we studied simulated Pi spectra with defined peak centers, areas, and signal-to-noise (S/N) ratios ranging from ∞ to 5.8. As the S/N ratio decreased below 15, the M-L algorithm located peak centers accurately when they were detected; however, small peaks tended to grow smaller and disappear, whereas the amplitudes of larger peaks increased. We developed an in vitro three-compartment model containing a mixture of Pi buffer, phosphocreatine, phosphate diester, and phosphate monoester (PME), portions of which were adjusted to three different pHs before addition of agar. Weighed samples of each buffered gel together with phospholipid extract and bone chips were placed in an NMR tube and covered with mineral oil. Following baseline correction, it was possible to separate the Pi peaks arising from the three compartments with different pH values if each peak made up 10–35% of total Pi area. In vivo, we identified the plasma compartment by intraarterial infusion of Pi. It was assumed that intracellular compartments contained high-energy phosphates and took up glucose. Based on these assumptions we subjected the brains to complete ischemia and observed that Pi compartments at pH 6.82, 6.92, 7.03, and 7.13 increased markedly in amplitude. If the brain cells took up and phosphorylated 2-deoxyglucose (2-DG), 2-DG-6-phosphate (2-DG-6-P) would appear in the PME portion of the spectrum ionized according to pHi. Four 2-DG-6-P peaks with calculated pH values of 6.86, 6.94, 7.04, and 7.15 did appear in the spectrum, thereby confirming that the four larger Pi peaks represented intracellular spaces.  相似文献   

9.
The rates of change in intracellular pH during repeated exercise sessions with rest periods was determined by 31 phosphorus-nuclear magnetic resonance spectroscopy (31P-MRS). Five long-distance runners and six healthy male subjects as controls performed a 2-min femoral flexion at 20 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore and repeated this exercise four times with 2-min rest periods intervening. In all cases during exercise the inorganic phosphate (Pi) peak split into two, the earlier increased rapidly (high-pH Pi) and the later (low-pH Pi) increased more slowly. The Pi peaks were separated by a fitting procedure using the least square mean method. The high-pH Pi area during exercise decreased as the number of repeated exercise periods increased, while the low-pH Pi area gradually increased. Although the total Pi area decreased exponentially during the recovery period, the high-pH Pi area decreased first and then the low-pH Pi area reduced gradually. The pH values were estimated from the chemical shift between the phosphocreatine peak and each split peak in the Pi. The high-pH in pooled data ranged from 6.6 to 7.0 during exercise and recovery, while the low pH decreased to 6.2 during exercise. As the number of exercise periods increased, each pH value gradually became less acidic, although there was a tendency to more acidity in the control subjects than in the long-distance runners. In conclusion, it was possible to obtain by non-invasive, continuous31P-MRS, a split pattern of Pi peaks during exercise and there were at least tow different intracellular pH values during exercise, suggesting that each Pi peak might be attributed to the types of muscle fibre recruited.  相似文献   

10.
One of many problems to be faced when assessing in vivo human muscle mitochondria respiration by phosphorus magnetic resonance spectroscopy (31P-MRS) is the definition of the correct reference population and the values of reference range. To take into account most factors that influence muscle activity as age, sex, physical activity; nutritional state etc., an exceedingly high number of different reference groups are needed. To overcome this problem we developed specific tests to assess separately in vivo the activity and the functionality of muscle mitochondria by 31P-MRS in clinical settings. By activity we refer to muscle whole metabolic activity, i.e. the total oxidative capacity of muscle mitochondria which is influenced by many factors (age, sex, physical activity, nutritional state etc.). By functionality we refer to the qualitative aspects of mitochondrial respiration which depends on the integrity of mitochondrial multienzyme systems and on substrate availability. Our tests ha ve been experienced on some 1200 patients and are currently used to detect deficits of mitochondrial respiration and ion transport in patients with suspected primary or secondary muscle mitochondrial malfunctioning. (Mol Cell Biochem 174: 11–15, 1997)  相似文献   

11.
The effect of phosphoenolpyruvate (PEP) on energy metabolism of ischemic liver was examined in anesthetized rats. In vivo 31P-NMR spectroscopy (31P-MRS) was used to monitor cellular energy metabolism. Hepatic ischemia was induced by temporarily clamping the portal vein for 60 minutes. The liver adenosine triphosphate (ATP) levels decreased remarkably during ischemia, and they gradually increased after ischemia but did not return to pre-operative levels. PEP effectively increased the levels of ATP. The ATP levels of the PEP-treated rats were significantly higher than those of the control rats, and also intracellular acidosis was improved during post-ischemic reperfusion. These findings suggest that PEP may have a cytoprotective effect and improve the energy metabolism in the ischemic liver.  相似文献   

12.
Stroke is a devastating disorder that significantly contributes to death, disability, and healthcare costs. New therapeutic strategies have been recently focusing on the development of neuroprotective agents that could halt the underlying mechanisms of neuronal death leading to brain damage. Accumulating evidence implicates proteins that are normally involved in the regulation of the cell cycle to neuronal death following ischemic insult, suggesting that these proteins could be suitable targets for stroke therapy. In this brief review, we present in vitro and in vivo arguments linking cell cycle molecules, i.e., cyclins, mitotic cyclin-dependent kinases (Cdks), as well as non-mitotic Cdk5, to ischemic neuronal death. We also report the evaluation of the potential of Cdk inhibitors as neuroprotective strategy for ischemic injury.  相似文献   

13.
31P NMR spectra of isolated rabbit bladder and uterus were obtained under steady-state arterial perfusion in vitro at rest and while stimulated. The spectra contained seven major peaks: phosphoethanolamine, sn-glycero(3)phosphocholine, inorganic phosphate (Pi), phosphocreatine, and the gamma, alpha, and beta peaks of ATP. Chemical analyses, high-pressure liquid chromatography, and NMR spectroscopy of aqueous extracts of bladders identified a number of other components that also made contributions to, but were not resolved in, the spectra of the intact tissues: UTP, GTP, UDP-Glc, NAD+, phosphocholine, and sn-glycero(3)phosphoethanolamine. Intracellular pH of unstimulated bladders and uteri, measured from the chemical shift of the Pi peak, was 7.10 +/- 0.09 S.D. and 7.01 +/- 0.12 S.D., respectively. The chemical shift of the beta-ATP peak in the smooth muscles was significantly upfield (-0.3 ppm) compared to the chemical shift observed in striated muscles (cat biceps and rat myocardium). An ADP peak was identified in stimulated and ischemic bladders. The chemical shifts of the nucleotides observed in perfused bladders were calibrated as a function of free Mg2+ concentration in solutions containing phosphocreatine, Pi, ADP, and ATP at an ionic strength of 180 mM. We derived the following estimates for the intracellular free Mg2+ concentration: uterus, 0.40 mM; unstimulated bladder, 0.46 mM; stimulated and ischemic bladder, 0.50 mM (from the ATP chemical shift) and 0.45 (from the ADP chemical shift); cat biceps, 1.5 mM; and rat myocardium, 1.4 mM.  相似文献   

14.
Abstract: Cholesterol ester hydrolase activities previously have been identified in brain and linked to the production of myelin, which has very low levels of esterified cholesterol. We have studied two cholesterol ester hydrolase activities (termed the pH 6.0 and pH 7.2 activities) in cultures derived from 19- to 21-day-old dissociated fetal rat brains and in developing rat brain. In vivo the levels of both the pH 6.0 and pH 7.2 activities began to increase by about 10 postnatal days, reached maximal levels at 20 days (20 and 1.5 nmol/h/mg protein, respectively), and thereafter remained nearly constant (pH 6.0) or decreased somewhat before becoming constant (pH 7.2). In contrast, in the cultures the pH 6.0 cholesterol ester hydrolase activity was low until 21 days in culture (DIC; 20 nmol/h/mg protein), increased to a peak activity at 31 DIC (60 nmol/h/mg protein), remained high for 24 days, and finally decreased (18 nmol/h/mg protein at 63 DIC); the pH 7.2 cholesterol ester hydrolase activity was very low until 20 DIC, increased to a peak activity at 31 days (3 nmol/h/mg protein), and thereafter decreased to a lower level (2 nmol/h/mg protein) that was maintained for about 24 days before decreasing (0.7 nmol/h/mg protein at 63 DIC). Therefore, (a) the time courses of appearance of both cholesterol ester hydrolase activities were delayed by 10–14 days relative to that seen in vivo, and (b) the specific activities observed in the cultures were transiently two- to three-fold higher than in rat brain, but then declined to levels characteristic of whole brain homogenates. Subcellular fractionation of the cultures demonstrated that the pH 7.2 cholesterol ester hydrolase activity, along with myelin basic protein and 2′,3′-cyclic nucleotide-3′-phosphohydrolase activity, was enriched in a membrane fraction collected at an interface between 0.32 M and 0.9 M sucrose; the pH 6.0 cholesterol ester hydrolase activity, in contrast, was enriched in the microsomal fraction.  相似文献   

15.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

16.
The present study objective involved evaluation of possibilities of magnetic resonance spectroscopy with phosphorus (31P-MRS) in diagnosis of metabolic disorders of skeletal muscles in patients with intermittent claudication, chronic heart failure and varicose disease of the lower extremities. In 20 patients with intermittent claudication, 10 patients with chronic heart failure, 10 patients with varicose disease and 10 volunteers, 31P-MRS was performed with 1.5 T MR system (Magnetom SP 63, Siemens). The following parameters were computed: phosphorus-creatinine index, intracellular pH in calf muscle, and time of half-recovery of the phosphorus-creatinine index. At rest, the phosphorus-creatinine indexes were similar in all groups; pH values at rest did not vary either. During isotonic exercise the phosphorus-creatinine index in the control group remained uncharged. In patients with intermittent claudication, the phosphorus-creatinine index at peak of exercise was decreased by 26.1% (p < 0.001), in patients with varicose disease--by 25.6% (p < 0.001), in patients with chronic heart failure by 8% (p < 0.001). PCr recovery half-time was increased in all patients. The patient group with intermittent claudication showed a reverse correlation between the pressure index and the degree of phosphorus-creatinine index decrease. CONCLUSION: 31P-MRS makes it possible to carry out non-invasive diagnosis of energy metabolic disorders of skeletal muscles in patients with impaired peripheral hemodynamics.  相似文献   

17.
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

18.
In vivo 31P-NMR spectroscopy (31P-MRS) was used to study the metabolism of phosphate compounds in rat liver under various conditions. The changes in hepatic concentrations of ATP and inorganic phosphate (Pi) or intracellular pH (pHi) were monitored during hypovolemic shock with or without the infusion of catecholamines. Rapid decreases in the ATP level and pHi with a concomitant increase of Pi were observed upon induction of the hypovolemic shock. Dopamine infusion markedly improved the liver ATP concentration and intracellular acidosis, but epinephrine or norepinephrine were without effects. The present results suggest that dopamine increases abdominal blood flow and improves the energy metabolism in the liver during hypovolemic shock.  相似文献   

19.
Size-dependent changes in therapeutically relevant and interrelated metabolic parameters of a murine fibrosarcoma (FSaII) were investigated in vivo using conscious (unanesthetized) animals and tumor sizes less than or equal to 2% of body weight. Tumor pH and bioenergetics were evaluated by 31P nuclear magnetic resonance spectroscopy (31P-MRS), and tumor tissue oxygen tension (pO2) distribution was examined using O2-sensitive needle electrodes. During growth FSaII tumors showed a progressive loss of phosphocreatine (PCr) and nucleoside triphosphate (NTP) with increasing inorganic phosphate (Pi) and phosphomonoester (PME) signals. Ratios for PCr/Pi, PME/Pi, NTP/Pi, and phosphodiester/inorganic phosphate (PDE/Pi) as well as pH determined by 31P-NMR (pHNMR) and the mean tissue pO2 progressively declined as the tumors increased in size. The only relevant ratio increasing with tumor growth was PME/NTP. When the mean tissue pO2 value was plotted against pHNMR, NTP/Pi, PCr/Pi, PME/Pi, and PDE/Pi for tumor groups of similar mean volumes, a highly significant positive correlation was observed. There was a negative correlation between mean tumor tissue pO2 values and PME/NTP. From these results we concluded that 31P-MRS can detect changes in tumor bioenergetics brought about by changes in tumor oxygenation. Furthermore, the close correlation between oxygenation and energy status suggests that the microcirculation in FSaII tumors yields an O2-limited energy metabolism. Finally, a correlation between the proportion of pO2 readings between 0 and 2.5 mmHg and the radiobiologically hypoxic cell fraction in FSaII tumors was observed. The latter finding might be of particular importance for radiation therapy.  相似文献   

20.
The changes in hepatic energy state were assessed by 31P-nuclear magnetic resonance spectroscopy (31P-MRS) and arterial ketone body ratio (AKBR) in brain dead dogs. 31P-MRS and AKBR were measured before and at 3 hours after brain death. Wiggers' shock model was employed to compare the energy metabolism during hypotension. 1) The brain death model: Systemic blood pressure changed from 178.3/115.0 mmHg (mean) in the control period, to 259.5/162.5 mmHg during Cushing phenomenon (CU period) and to 63.3/51.7 mmHg after completion of brain death (BD period). beta-ATP/Pi increased from 1.27 +/- 0.14 (mean +/- SEM) to 1.46 +/- 0.16 in the early CU period, and then decreased to 1.11 +/- 0.15 at 60 minutes after BD, followed by a gradual increase to 1.33 +/- 0.13 at 3 hours after BD. Intracellular pH (pHi) increased alkaline to the control value. AKBR decreased from 1.10 +/- 0.26 to 0.46 +/- 0.15 in the CU period (p less than 0.05) and then increased to 1.48 +/- 0.25 after BD. 2) Wiggers' shock model: Systemic blood pressure was 190.0/112.5 mmHg in the control period, 83.8/51.3 mmHg during exsanguination (EX period) and 185.0/117.0 mmHg after retransfusion (RT period). beta-ATP/Pi decreased from 1.17 +/- 0.13 to 0.61 +/- 0.10 in the EX period (p less than 0.05) and increased to 1.37 +/- 0.08 in the RT period. The pHi deviated from 7.33 +/- 0.07 to 6.82 +/- 0.14 in the EX period (p less than 0.01) and to 7.51 +/- 0.21 in the RT period. AKBR decreased from 1.00 +/- 0.11 to 0.21 +/- 0.04 in the EX period and increased to 1.08 +/- 0.12 in the RT period. The energy metabolism of the liver was well maintained in the state of brain death in spite of remarkable hypotension, although that was not the case with Wiggers' shock model. It was suggested that the combination of 31P-MRS and AKBR was useful for the evaluation of graft liver viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号