共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jianbin Yan Chi Zhang Min Gu Zhiyan Bai Weiguo Zhang Tiancong Qi Zhiwei Cheng Wen Peng Haibin Luo Fajun Nan Zhao Wang Daoxin Xie 《The Plant cell》2009,21(8):2220-2236
Jasmonates play a number of diverse roles in plant defense and development. CORONATINE INSENSITIVE1 (COI1), an F-box protein essential for all the jasmonate responses, interacts with multiple proteins to form the SCFCOI1 E3 ubiquitin ligase complex and recruits jasmonate ZIM-domain (JAZ) proteins for degradation by the 26S proteasome. To determine which protein directly binds to jasmonoyl-isoleucine (JA-Ile)/coronatine (COR) and serves as a receptor for jasmonate, we built a high-quality structural model of COI1 and performed molecular modeling of COI1–jasmonate interactions. Our results imply that COI1 has the structural traits for binding JA-Ile or COR. The direct binding of these molecules with COI1 was further examined using a combination of molecular and biochemical approaches. First, we used the immobilized jasmonate approach to show that the COI1 protein in crude leaf extracts can bind to the jasmonate moiety of JA-Ile. Second, we employed surface plasmon resonance technology with purified COI1 and JAZ1 protein to reveal the interaction among COI1, JA-Ile, and JAZ1. Finally, we used the photoaffinity labeling technology to show the direct binding of COR with purified insect-expressed COI1. Taken together, these results demonstrate that COI1 directly binds to JA-Ile and COR and serves as a receptor for jasmonate. 相似文献
3.
Jose C. Jimenez-Lopez Xia Wang Simeon O. Kotchoni Shanjin Huang Daniel B. Szymanski Christopher J. Staiger 《Plant physiology》2014,166(3):1312-1328
The actin cytoskeleton is a major regulator of cell morphogenesis and responses to biotic and abiotic stimuli. The organization and activities of the cytoskeleton are choreographed by hundreds of accessory proteins. Many actin-binding proteins are thought to be stimulus-response regulators that bind to signaling phospholipids and change their activity upon lipid binding. Whether these proteins associate with and/or are regulated by signaling lipids in plant cells remains poorly understood. Heterodimeric capping protein (CP) is a conserved and ubiquitous regulator of actin dynamics. It binds to the barbed end of filaments with high affinity and modulates filament assembly and disassembly reactions in vitro. Direct interaction of CP with phospholipids, including phosphatidic acid, results in uncapping of filament ends in vitro. Live-cell imaging and reverse-genetic analyses of cp mutants in Arabidopsis (Arabidopsis thaliana) recently provided compelling support for a model in which CP activity is negatively regulated by phosphatidic acid in vivo. Here, we used complementary biochemical, subcellular fractionation, and immunofluorescence microscopy approaches to elucidate CP-membrane association. We found that CP is moderately abundant in Arabidopsis tissues and present in a microsomal membrane fraction. Sucrose density gradient separation and immunoblotting with known compartment markers were used to demonstrate that CP is enriched on membrane-bound organelles such as the endoplasmic reticulum and Golgi. This association could facilitate cross talk between the actin cytoskeleton and a wide spectrum of essential cellular functions such as organelle motility and signal transduction.The cellular levels of membrane-associated lipids undergo dynamic changes in response to developmental and environmental stimuli. Different species of phospholipids target specific proteins and this often affects the activity and/or subcellular localization of these lipid-binding proteins. One such membrane lipid, phosphatidic acid (PA), serves as a second messenger and regulates multiple developmental processes in plants, including seedling development, root hair growth and pattern formation, pollen tube growth, leaf senescence, and fruit ripening. PA levels also change during various stress responses, including high salinity and dehydration, pathogen attack, and cold tolerance (Testerink and Munnik, 2005, 2011; Wang, 2005; Li et al., 2009). In mammalian cells, PA is critical for vesicle trafficking events, such as vesicle budding from the Golgi apparatus, vesicle transport, exocytosis, endocytosis, and vesicle fusion (Liscovitch et al., 2000; Freyberg et al., 2003; Jenkins and Frohman, 2005).The actin cytoskeleton and a plethora of actin-binding proteins (ABPs) are well-known targets and transducers of lipid signaling (Drøbak et al., 2004; Saarikangas et al., 2010; Pleskot et al., 2013). For example, several ABPs have the ability to bind phosphoinositide lipids, such as phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. The severing or actin filament depolymerizing proteins such as villin, cofilin, and profilin are inhibited when bound to PtdIns(4,5)P2. One ABP appears to be strongly regulated by another phospholipid; human gelsolin binds to lysophosphatidic acid and its filament severing and barbed-end capping activities are inhibited by this biologically active lipid (Meerschaert et al., 1998). Gelsolin is not, however, regulated by PA (Meerschaert et al., 1998), nor are profilin (Lassing and Lindberg, 1985), α-actinin (Fraley et al., 2003), or chicken CapZ (Schafer et al., 1996).The heterodimeric capping protein (CP) from Arabidopsis (Arabidopsis thaliana) also binds to and its activity is inhibited by phospholipids, including both PtdIns(4,5)P2 and PA (Huang et al., 2003, 2006). PA and phospholipase D activity have been implicated in the actin-dependent tip growth of root hairs and pollen tubes (Ohashi et al., 2003; Potocký et al., 2003; Samaj et al., 2004; Monteiro et al., 2005a; Pleskot et al., 2010). Exogenous application of PA causes an elevation of actin filament levels in suspension cells, pollen, and Arabidopsis epidermal cells (Lee et al., 2003; Potocký et al., 2003; Huang et al., 2006; Li et al., 2012; Pleskot et al., 2013). Capping protein (CP) binds to the barbed end of actin filaments with high (nanomolar) affinity, dissociates quite slowly, and prevents the addition of actin subunits at this end (Huang et al., 2003, 2006; Kim et al., 2007). In the presence of phospholipids, AtCP is not able to bind to the barbed end of actin filaments (Huang et al., 2003, 2006). Furthermore, capped filament ends are uncapped by the addition of PA, allowing actin assembly from a pool of profilin-actin (Huang et al., 2006). Collectively, these data lead to a simple model whereby CP, working in concert with profilin-actin, serves to maintain tight regulation of actin assembly at filament barbed ends (Huang et al., 2006; Blanchoin et al., 2010; Henty-Ridilla et al., 2013; Pleskot et al., 2013). Furthermore, the availability of CP for filament ends can be modulated by fluxes in signaling lipids. Genetic evidence for this model was recently obtained by analyzing the dynamic behavior of actin filament ends in living Arabidopsis epidermal cells after treatment with exogenous PA (Li et al., 2012). Specifically, changes in the architecture of cortical actin arrays and dynamics of individual actin filaments that are induced by PA treatment were found to be attenuated in cp mutant cells (Li et al., 2012; Pleskot et al., 2013).Structural characterization of chicken CapZ demonstrates that the α- and β-subunits of the heterodimer form a compact structure resembling a mushroom with pseudo-two-fold rotational symmetry (Yamashita et al., 2003). Actin- and phospholipid-binding sites are conserved on the C-terminal regions, sometimes referred to as tentacles, which comprise amphipathic α-helices (Cooper and Sept, 2008; Pleskot et al., 2012). Coarse-grained molecular dynamics (CG-MD) simulations recently revealed the mechanism of chicken and AtCP association with membranes (Pleskot et al., 2012). AtCP interacts specifically with lipid bilayers through interactions between PA and the amphipathic helix of the α-subunit tentacle. Extensive polar contacts between lipid headgroups and basic residues on CP (including K278, which is unique to plant CP), as well as partial embedding of nonpolar groups into the lipid bilayer, are observed (Pleskot et al., 2012). Moreover, a glutathione S-transferase fusion protein containing the C-terminal 38 amino acids from capping protein α subunit (CPA) is sufficient to bind PA-containing liposomes in vitro (Pleskot et al., 2012). Collectively, these findings lead us to predict that AtCP will behave like a membrane-associated protein in plant cells.Additional evidence from animal and microbial cells supports the association of CP with biological membranes. In Acanthamoeba castellanii, CP is localized primarily to the hyaline ectoplasm in a region of the cytoplasm just under the plasma membrane that contains a high concentration of actin filaments (Cooper et al., 1984). Localization of CP with regions rich in actin filaments and with membranes was supported by subcellular fractionation experiments, in which CP was associated with a crude membrane fraction that included plasma membrane (Cooper et al., 1984). Further evidence demonstrates that CP localizes to cortical actin patches at sites of new cell wall growth in budding yeast (Saccharomyces cerevisiae), including the site of bud emergence. By contrast, CP did not colocalize with actin cables in S. cerevisiae (Amatruda and Cooper, 1992). CP may localize to these sites by direct interactions with membrane lipids, through binding the ends of actin filaments, or by association with another protein different from actin. In support of this hypothesis, GFP-CP fusion proteins demonstrate that sites of actin assembling in living cells contain both CP and the actin-related protein2/3 (Arp2/3) complex, and CP is located in two types of structures: (1) motile regions of the cell periphery, which reflect movement of the edge of the lamella during extension and ruffling; and (2) dynamic spots within the lamella (Schafer et al., 1998). CP has been colocalized to the F-actin patches in fission yeast (Schizosaccharomyces pombe; Kovar et al., 2005), which promotes Arp2/3-dependent nucleation and branching and limits the extent of filament elongation (Akin and Mullins, 2008). These findings lend additional support for a model whereby CP cooperates with the Arp2/3 complex to regulate actin dynamics (Nakano and Mabuchi, 2006). Activities and localization of other plant ABPs are linked to membranes. Membrane association has been linked to the assembly status of the ARP2/3 complex, an actin filament nucleator, in Arabidopsis (Kotchoni et al., 2009). SPIKE1 (SPK1), a Rho of plants (Rop)-guanine nucleotide exchange factor (GEF) and peripheral membrane protein, maintains the homeostasis of the early secretory pathway and signal integration during morphogenesis through specialized domains in the endoplasmic reticulum (ER; Zhang et al., 2010). Furthermore, Nck-associated protein1 (NAP1), a component of the suppressor of cAMP receptor/WASP-family verprolin homology protein (SCAR/WAVE) complex, strongly associates with membranes and is particularly enriched in ER membranes (Zhang et al., 2013a). Finally, a superfamily of plant ABPs, called NETWORKED proteins, was recently discovered; these link the actin cytoskeleton to various cellular membranes (Deeks et al., 2012; Hawkins et al., 2014; Wang et al., 2014).In this work, we demonstrate that CP is a membrane-associated protein in Arabidopsis. To our knowledge, this is the first direct evidence for CP-membrane association in plants. This interaction likely targets CP to cellular compartments such as the ER and Golgi. This unique location may allow CP to remodel the actin cytoskeleton in the vicinity of endomembrane compartments and/or to respond rapidly to fluxes in signaling lipids. 相似文献
4.
Touihri S Knöll C Stierhof YD Müller I Mayer U Jürgens G 《The Plant journal : for cell and molecular biology》2011,68(5):755-764
In plant cytokinesis, Golgi/trans-Golgi network-derived vesicles are targeted to the plane of cell division where they fuse with one another to form the partitioning membrane (cell plate). This membrane fusion requires a specialised syntaxin (Qa-SNARE), named KNOLLE in Arabidopsis. KNOLLE is only made during the M-phase of the cell cycle, targeted to the plane of cell division and degraded in the vacuole at the end of cytokinesis. To identify the parts of KNOLLE required for proper targeting and function in membrane fusion, we generated chimeric syntaxins comprising complementary fragments from KNOLLE and MVB-localized PEP12 (SYP21). Surprisingly, targeting of the chimeric protein was not specified by the C-terminal membrane anchor. Rather the N-terminal region including helix Ha and the adjacent linker to helix Hb appeared to played a critical role. However, deletion of this N-terminal fragment from KNOLLE (KN(Δ1-82) ) had the same effect as its presence in the chimeric protein (KN(1-82) -PEP12(64-279) ), suggesting that targeting to the plane of cell division occurs by default, i.e. when no sorting signal would target the syntaxin to a specific endomembrane compartment. Once the full-length syntaxin accumulated at the plane of division, phenotypic rescue of the knolle mutant only required the SNARE domain plus the adjacent linker connecting helix Hc to the SNARE domain from KNOLLE. Our results suggest that targeting of syntaxin to the plane of cell division occurs without active sorting, whereas syntaxin-mediated membrane fusion requires sequence-specific features. 相似文献
5.
Müller I Wagner W Völker A Schellmann S Nacry P Küttner F Schwarz-Sommer Z Mayer U Jürgens G 《Nature cell biology》2003,5(6):531-534
Syntaxins interact with other SNAREs (soluble NSF-attachment protein receptors) to form structurally related complexes that mediate membrane fusion in diverse intracellular trafficking pathways. The original SNARE hypothesis postulated that each type of transport vesicle has its own distinct vesicle-SNARE that pairs up with a unique target-SNARE, or syntaxin, on the target membrane. However, recent evidence suggests that small G-proteins of the Rab family and their effectors mediate the initial contact between donor and acceptor membranes, providing complementary specificity to SNARE pairing at a later step towards membrane fusion. To assess the role of syntaxin specificity in membrane recognition requires a biological assay in which one syntaxin is replaced by other family members that do not normally function in that trafficking pathway. Here, we examine whether membrane fusion in Arabidopsis thaliana cytokinesis, which involves a plant-specific syntaxin, the cell-cycle-regulated KNOLLE (KN) protein, can be mediated by other syntaxins if expressed under the control of KN cis-regulatory sequences. Only a non-essential syntaxin was targeted to the plane of cell division and sufficiently related to KN to perform its function, thus revealing syntaxin specificity of cytokinesis. 相似文献
6.
The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor 总被引:1,自引:0,他引:1
Amparo Cuéllar Pérez Astrid Nagels Durand Robin Vanden Bossche Rebecca De Clercq Geert Persiau Saskia C. M. Van Wees Corné M. J. Pieterse Kris Gevaert Geert De Jaeger Alain Goossens Laurens Pauwels 《PloS one》2014,9(1)
7.
L Chelysheva D Vezon A Chambon G Gendrot L Pereira A Lemhemdi N Vrielynck S Le Guin M Novatchkova M Grelon 《PLoS genetics》2012,8(7):e1002799
In numerous species, the formation of meiotic crossovers is largely under the control of a group of proteins known as ZMM. Here, we identified a new ZMM protein, HEI10, a RING finger-containing protein that is well conserved among species. We show that HEI10 is structurally and functionally related to the yeast Zip3 ZMM and that it is absolutely required for class I crossover (CO) formation in Arabidopsis thaliana. Furthermore, we show that it is present as numerous foci on the chromosome axes and the synaptonemal complex central element until pachytene. Then, from pachytene to diakinesis, HEI10 is retained at a limited number of sites that correspond to class I COs, where it co-localises with MLH1. Assuming that HEI10 early staining represents an early selection of recombination intermediates to be channelled into the ZMM pathway, HEI10 would therefore draw a continuity between early chosen recombination intermediates and final class I COs. 相似文献
8.
Waizenegger I Lukowitz W Assaad F Schwarz H Jürgens G Mayer U 《Current biology : CB》2000,10(21):1371-1374
Partitioning of the cytoplasm during cytokinesis or cellularisation requires syntaxin-mediated membrane fusion [1-3]. Whereas in animals, membrane fusion promotes ingression of a cleavage furrow from the plasma membrane [4,5], somatic cells of higher plants form de novo a transient membrane compartment, the cell plate, which is initiated in the centre of the division plane and matures into a new cell wall and its flanking plasma membranes [6,7]. Cell plate formation results from the fusion of Golgi-derived vesicles delivered by a dynamic cytoskeletal array, the phragmoplast. Mutations in two Arabidopsis genes, KNOLLE (KN) and KEULE (KEU), cause abnormal seedlings with multinucleate cells and incomplete cell walls [1,8]. The KN gene encodes a cytokinesis-specific syntaxin which localises to the cell plate [9]. Here, we show that KN protein localisation is unaffected in keu mutant cells, which, like kn, display phragmoplast microtubules and accumulate ADL1 protein in the plane of cell division but vesicles fail to fuse with one another. Genetic interactions between KN and KEU were analysed in double mutant embryos. Whereas the haploid gametophytes gave rise to functional gametes, the embryos behaved like single cells displaying multiple, synchronously cycling nuclei, cell cycle-dependent microtubule arrays and ADL1 accumulation between pairs of daughter nuclei. This complete inhibition of cytokinesis from fertilisation indicates that KN and KEU, have partially redundant functions and interact specifically in vesicle fusion during cytokinesis of somatic cells. 相似文献
9.
We recently identified a single family member homologue of syntaxin in the sea urchin. Syntaxin is present throughout development, and in rapidly dividing cleavage stage embryos it is present on numerous vesicles at the cell cortex. We hypothesized that syntaxin mediates essential membrane fusion events during early embryogenesis, reasoning that the vesicles and/or their contents are important for development. Here we show that functional inactivation of syntaxin with either Botulinum neurotoxin C1, which specifically proteolyzes syntaxin, or antibodies against syntaxin results in an inhibition of cell division. These observations suggest that syntaxin is essential for membrane fusion events critical for cell division. 相似文献
10.
Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor) proteins and SM (Sec1/Munc18) family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1), a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs) from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient Wsh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions. 相似文献
11.
12.
XCP1 is a xylem-specific papain-like cysteine peptidase in Arabidopsis. To determine whether XCP1 could be involved in tracheary element autolysis, promoter activity and localization of XCP1 were investigated using XCP1 promoter-beta-glucuronidase fusions and immunofluorescence confocal microscopy. A tracheary element expression pattern was detected for XCP1. Results from confocal microscopy and biochemical subcellular fractionation indicated that XCP1 was localized in the vacuole. Ectopic expression of XCP1 resulted in a reduction in plant size in some lines and early leaf senescence, as indicated by early loss of leaf chlorophyll. Reduced plant size was correlated with higher levels of XCP1, as shown by immunoblot and peptidase activity gel analyses. The XCP1 prodomain exhibits exceptionally high similarity (greater than 80%) to the prodomains of papain and other papain-like enzymes isolated from papaya (Carica papaya) laticifers when compared with all other reported papain-like enzymes. The potential for XCP1 and papain to perform common functions as catalysts of autolytic processing following cell death due to programmed suicide or to wounding is discussed. 相似文献
13.
Qianqian Qin Wei Wang Xiaola Guo Jing Yue Yan Huang Xiufei Xu Jia Li Suiwen Hou 《PLoS genetics》2014,10(7)
Gibberellins (GAs) are a class of important phytohormones regulating a variety of physiological processes during normal plant growth and development. One of the major events during GA-mediated growth is the degradation of DELLA proteins, key negative regulators of GA signaling pathway. The stability of DELLA proteins is thought to be controlled by protein phosphorylation and dephosphorylation. Up to date, no phosphatase involved in this process has been identified. We have identified a dwarfed dominant-negative Arabidopsis mutant, named topp4-1. Reduced expression of TOPP4 using an artificial microRNA strategy also resulted in a dwarfed phenotype. Genetic and biochemical analyses indicated that TOPP4 regulates GA signal transduction mainly via promoting DELLA protein degradation. The severely dwarfed topp4-1 phenotypes were partially rescued by the DELLA deficient mutants rga-t2 and gai-t6, suggesting that the DELLA proteins RGA and GAI are required for the biological function of TOPP4. Both RGA and GAI were greatly accumulated in topp4-1 but significantly decreased in 35S-TOPP4 transgenic plants compared to wild-type plants. Further analyses demonstrated that TOPP4 is able to directly bind and dephosphorylate RGA and GAI, confirming that the TOPP4-controlled phosphorylation status of DELLAs is associated with their stability. These studies provide direct evidence for a crucial role of protein dephosphorylation mediated by TOPP4 in the GA signaling pathway. 相似文献
14.
In plants, the trans-Golgi network and early endosomes (TGN/EE) function as the central junction for major endomembrane trafficking events, including endocytosis and secretion. Here, we demonstrate that the KEEP ON GOING (KEG) protein of Arabidopsis thaliana localizes to the TGN/EE and plays an essential role in multiple intracellular trafficking processes. Loss-of-function keg mutants exhibited severe defects in cell expansion, which correlated with defects in vacuole morphology. Confocal microscopy revealed that KEG is required for targeting of plasma membrane proteins to the vacuole. This targeting process appeared to be blocked at the step of multivesicular body (MVB) fusion with the vacuolar membrane as the MVB-associated small GTPase ARA6 was also blocked in vacuolar delivery. In addition, loss of KEG function blocked secretion of apoplastic defense proteins, indicating that KEG plays a role in plant immunity. Significantly, KEG was degraded specifically in cells infected by the fungus Golovinomyces cichoracearum, suggesting that this pathogen may target KEG to manipulate the host secretory system as a virulence strategy. Taking these results together, we conclude that KEG is a key component of TGN/EE that regulates multiple post-Golgi trafficking events in plants, including vacuole biogenesis, targeting of membrane-associated proteins to the vacuole, and secretion of apoplastic proteins. 相似文献
15.
Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis
Yohann Boutté Márcia Frescatada-Rosa Shuzhen Men Cheung-Ming Chow Kazuo Ebine Anna Gustavsson Lenore Johansson Takashi Ueda Ian Moore Gerd Jürgens Markus Grebe 《The EMBO journal》2010,29(3):546-558
Cytokinesis represents the final stage of eukaryotic cell division during which the cytoplasm becomes partitioned between daughter cells. The process differs to some extent between animal and plant cells, but proteins of the syntaxin family mediate membrane fusion in the plane of cell division in diverse organisms. How syntaxin localization is kept in check remains elusive. Here, we report that localization of the Arabidopsis KNOLLE syntaxin in the plane of cell division is maintained by sterol-dependent endocytosis involving a clathrin- and DYNAMIN-RELATED PROTEIN1A-dependent mechanism. On genetic or pharmacological interference with endocytosis, KNOLLE mis-localizes to lateral plasma membranes after cell-plate fusion. Fluorescence-loss-in-photo-bleaching and fluorescence-recovery-after-photo-bleaching experiments reveal lateral diffusion of GFP-KNOLLE from the plane of division to lateral membranes. In an endocytosis-defective sterol biosynthesis mutant displaying lateral KNOLLE diffusion, KNOLLE secretory trafficking remains unaffected. Thus, restriction of lateral diffusion by endocytosis may serve to maintain specificity of syntaxin localization during late cytokinesis. 相似文献
16.
拟南芥编码亮氨酸拉链蛋白的AS2基因在叶发育中具有控制极性建立的作用 总被引:5,自引:0,他引:5
在拟南芥 (Arabidopsisthaliana (L .)Heynh .)叶发育研究中 ,as2是一个经典突变体。as2典型的表型是叶片开裂或形成一种小叶状结构。遗传学和分子生物学实验证明 ,AS2基因具有抑制KNOX基因在叶中表达的功能。在本文中 ,我们着重研究了新得到的在Landsbergerecta (Ler)遗传背景下的as2突变体。除了前人报道过的as2表型外 ,新as2突变体的部分叶柄长在叶片的下方 ,形成一种荷叶状结构 ,更严重的甚至长成花丝状叶结构。这两种结构都反映了不正常的叶腹背轴极性分化。在我们所收集到的as2等位突变体中 ,只有在Ler背景下这两种结构才以高频率出现。我们通过图位克隆方法分离了AS2基因。该基因编码一个含有亮氨酸拉链结构的蛋白。在拟南芥中 ,AS2同源基因共 4 3个 ,除AS2外 ,其他基因的功能都不清楚。AS2在叶和花中表达 ,在茎中无表达 ,这种表达模式和as2突变体的表型是吻合的。 相似文献
17.
在拟南芥(Arabidopsis thaliana (L.) Heynh.)叶发育研究中,as2是一个经典突变体.as2典型的表型是叶片开裂或形成一种小叶状结构.遗传学和分子生物学实验证明,AS2基因具有抑制KNOX基因在叶中表达的功能.在本文中,我们着重研究了新得到的在Landsberg erecta (Ler)遗传背景下的as2突变体.除了前人报道过的as2表型外,新as2突变体的部分叶柄长在叶片的下方,形成一种荷叶状结构,更严重的甚至长成花丝状叶结构.这两种结构都反映了不正常的叶腹背轴极性分化.在我们所收集到的as2等位突变体中,只有在Ler背景下这两种结构才以高频率出现.我们通过图位克隆方法分离了AS2基因.该基因编码一个含有亮氨酸拉链结构的蛋白.在拟南芥中,AS2同源基因共43个,除AS2外,其他基因的功能都不清楚.AS2在叶和花中表达,在茎中无表达,这种表达模式和as2突变体的表型是吻合的. 相似文献
18.
19.
20.
Cristina Pignocchi Gregory E. Minns Nathalie Nesi Rachil Koumproglou Georgios Kitsios Christoph Benning Clive W. Lloyd John H. Doonan Matthew J Hills 《The Plant cell》2009,21(1):90-105
Early endosperm development involves a series of rapid nuclear divisions in the absence of cytokinesis; thus, many endosperm mutants reveal genes whose functions are essential for mitosis. This work finds that the endosperm of Arabidopsis thaliana endosperm-defective1 (ede1) mutants never cellularizes, contains a reduced number of enlarged polyploid nuclei, and features an aberrant microtubule cytoskeleton, where the specialized radial microtubule systems and cytokinetic phragmoplasts are absent. Early embryo development is substantially normal, although occasional cytokinesis defects are observed. The EDE1 gene was cloned using a map-based approach and represents the pioneer member of a conserved plant-specific family of genes of previously unknown function. EDE1 is expressed in the endosperm and embryo of developing seeds, and its expression is tightly regulated during cell cycle progression. EDE1 protein accumulates in nuclear caps in premitotic cells, colocalizes along microtubules of the spindle and phragmoplast, and binds microtubules in vitro. We conclude that EDE1 is a novel plant-specific microtubule-associated protein essential for microtubule function during the mitotic and cytokinetic stages that generate the Arabidopsis endosperm and embryo. 相似文献