首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles of Polyethylene Sebacate: A New Biodegradable Polymer   总被引:1,自引:0,他引:1  
The present study demonstrates feasibility of preparation of nanoparticles using a novel polymer, polyethylene sebacate (PES), and its application in the design of drug-loaded nanocarriers. Silymarin was selected as a model hydrophobic drug for the present study. Two methods of preparation, viz., nanoprecipitation and emulsion solvent diffusion, were evaluated for preparation of nanoparticles. Effect of surfactants polyvinyl alcohol (PVA), lutrol F 68, and Tween 80 on the preparation of blank and silymarin-loaded PES nanoparticles was evaluated. Nanoprecipitation resulted in the formation of nanoparticles with all the surfactants (<450 nm). Increase in surfactant concentration resulted in decrease in entrapment efficiency and particle size except with PVA. The type and concentration of surfactant was critical to achieve low size and adequate drug entrapment. While increase in concentration of PES resulted in larger nanoparticles, inclusion of acetone in the organic phase resulted in particles of smaller size. In case of emulsion solvent diffusion, nanoparticles were obtained only with lutrol F 68 as surfactant and high surfactant concentration. The study revealed nanoprecipitation as a more versatile method for preparation of PES nanoparticles. Scanning electron microscopy studies revealed spherical shape of nanoparticles. Freeze-dried nanoparticles exhibited ease of redispersion, with a marginal increase in size. Differential scanning calorimetry and X-ray diffraction analysis revealed amorphous nature of the drug. The study demonstrates successful design of PES nanoparticles as drug carriers.  相似文献   

2.
The detoxification of tetanus toxin by formaldehyde is a crucial step in the production of tetanus toxoid. The inactivation results in chemically modified proteins and it determines largely the ultimate efficacy and safety of the vaccine. Currently, the quality of tetanus toxoid lots is evaluated in potency and safety tests performed in animals. As a possible alternative, this article describes a panel of in vitro methods, which provides detailed information about the quality of tetanus toxoid. Ten experimental lots of tetanus toxoid were prepared using increasing concentrations of formaldehyde and glycine to obtain tetanus toxoids having differences in antigenicity, immunogenicity, residual toxicity and protein structure. The structural properties of each individual toxoid were determined using immunochemical and physicochemical methods, including biosensor analysis, ELISA, circular dichroism, TNBS assay, differential scanning calorimetry, fluorescence and SDS-PAGE. The quality of a tetanus toxoid lot can be assessed by these set of analytical techniques. Based on antigenicity, immunogenicity and residual toxicity data, criteria are formulated that tetanus toxoids lot have to meet in order to have a high quality. The in vitro methods are a valuable selection of techniques for monitoring consistency of production of tetanus toxoid, especially for the detoxification process of tetanus toxin.  相似文献   

3.
In recent years, CD surface modification methods are employed for immunoassay techniques that is called BioCD technology. In this research, first polycarbonate surface was activated with UV ozone and a hydrophilic surface was obtained. Contact angle measurements and atomic force microscopy technique confirmed the hydrophilic property of surface. After that, tetanus toxoid was immobilized on modified CD surface then specific monoclonal antibody, gold nanoparticles conjugated antibody, silver salt, and hydroquinone were added on modified CD surface. So a sandwiches complex as tetanus toxoid, tetanus toxoid monoclonal antibody, and gold nanoparticles conjugated antibody was obtained on CD surface. ATR result showed the immobilization of tetanus toxoid on modified CD surface. Localized surface plasmon resonance (LSPR) and DLS results confirmed the complex formation. Silver salt and hydroquinone were added for signal amplification. Detection limit of anti-tetanus toxoid IgG monoclonal antibody was obtained 0.005 IU/ml by LSPR and DLS techniques. The presented method increases the assay’s sensitivity. BioCD-based immunoassay for detection of anti-tetanus toxoid IgG monoclonal antibody could be applicable in development and fabrication of biomedical devices.  相似文献   

4.
Han L  Zhao Y  Yin L  Li R  Liang Y  Huang H  Pan S  Wu C  Feng M 《AAPS PharmSciTech》2012,13(3):836-845
In the present study, we developed novel insulin-loaded hyaluronic acid (HA) nanoparticles for insulin delivery. The insulin-loaded HA nanoparticles were prepared by reverse-emulsion-freeze-drying method. This method led to a homogenous population of small HA nanoparticles with average size of 182.2 nm and achieved high insulin entrapment efficiencies (approximately 95%). The pH-sensitive HA nanoparticles as an oral delivery carrier showed advantages in protecting insulin against the strongly acidic environment of the stomach, and not destroying the junction integrity of epithelial cells which promise long-term safety for chronic insulin treatment. The results of transport experiments suggested that insulin-loaded HA nanoparticles were transported across Caco-2 cell monolayers mainly via transcellular pathway and their apparent permeability coefficient from apical to basolateral had more than twofold increase compared with insulin solution. The efflux ratio of Papp (B to A) to Papp (A to B) less than 1 demonstrated that HA nanoparticle-mediated transport of insulin across Caco-2 cell monolayers underwent active transport. The results of permeability through the rat small intestine confirmed that HA nanoparticles significantly enhanced insulin transport through the duodenum and ileum. Diabetic rats treated with oral insulin-loaded HA nanoparticles also showed stronger hypoglycemic effects than insulin solution. Therefore, these HA nanoparticles could be a promising candidate for oral insulin delivery.KEY WORDS: high entrapment efficiency, hyaluronic acid nanoparticles, insulin, pH sensitive, transcellular delivery  相似文献   

5.
The purpose of this research was to improve the entrapment efficiency of a model hydrophilic drug substance, sodium cromoglycate, loaded inside polylactic acid nanoparticles by a modified nanoprecipitation method. The effect of formulation parameters was studied to improve the entrapment efficiency of the drug substance inside the nanoparticles. Several parameters (changes in the amount of model drug, solvent selection, electrolyte addition, pH alteration) were tested in order to increase the loading of the hydrophilic drug in the hydrophobic nanoparticles. Lowering of the pH was the most efficient way to increase the drug loading; up to approximately 70% of the sodium cromoglycate used in the particle formation process could be loaded inside the particles. The loading efficiency without the pH change was around 10% to 15% at maximum. The crystallinity values and crystal habits of the sodium cromoglycate nanoparticles were studied (x-ray diffraction) before and after the lowering of the pH. The change in pH conditions during the nanoprecipitation process did not affect markedly the crystallinity properties of the drug substance. According to this study, it is possible to improve the entrapment efficiency of hydrophilic sodium cromoglycate inside of the nanoparticles by small changes in the process parameters without alterations in the physical properties of the original drug substance.  相似文献   

6.
The purpose of this research was to improve the entrapment efficiency of a model hydrophilic drug substance, sodium cromoglycate, loaded inside polylactic acid nanoparticles by a modified nanoprecipitation method. The effect of formulation parameters was studied to improve the entrapment efficiency of the drug substance inside the nanoparticles. Several parameters (changes in the amount of model drug, solvent selection, electrolyte addition, pH alteration) were tested in order to increase the loading of the hydrophilic drug in the hydrophobic nanoparticles. Lowering of the pH was the most efficiency way to increase the drug loading; up to approximately 70% of the sodium cromoglycate used in the particle formation process could be loaded inside the particles. The loading efficiency without the pH change was around 10% to 15% at maximum. The crystallinity values and crystal habits of the sodium cromoglycate nanoparticles were studied (x-ray diffraction) before and after the lowering of the pH. The change in pH conditions during the nanoprecipitation process did not affect markedly the crystallinity properties of the drug substance. According to this study, it is possible to improve the entrapment efficiency of hydrophilic sodium cromoglycate inside of the nanoparticles by small changes in the process parameters without alterations in the physical properties of the original drug subtance.  相似文献   

7.
The procedure for obtaining monoclonal antibodies TT-1, TT-2, and TT-3 against tetanus toxin/toxoid is described. It is shown that the commercial DTP vaccine and tetanus toxoid conjugated with a low-molecular-weight hapten can both be used as immunogens. Monoclonal antibodies TT-1 and TT-2 neutralized tetanus toxin in vivo. The monoclonal antibodies obtained were used to design and compare several schemes of quantitative determination of tetanus toxoid and toxin by ELISA. A more sensitive competitive ELISA allowed the detection of as much as 0.01 EC/ml toxoid and 50 LD50/ml toxin.  相似文献   

8.
A schedule for the prevention of tetanus in the injured, which has been in operation in the emergency department of a large hospital for over two years, is proposed. For the majority of nonimmunized persons, it is recommended that a dose of toxoid and 50 units tetanus immune globulin (human) (TIGH) be given, in separate sites, to be followed later by additional doses of toxoid for the completion of active immunization. Combined active-passive immunization with tetanus toxoid and 50 units TIGH gives a low level of passive immunity and stimulates early onset of active immunization. In combined active-passive immunization, adsorbed tetanus toxoid produced a significantly higher response than the fluid toxoid. The injection of 400 units TIGH somewhat suppressed the induction of immunity following the first dose of AlPO4-tetanus toxoid.  相似文献   

9.
Low-molecular-weight chitosan (LMWC) was obtained by enzymatic degradation and ultrafiltration separation. LMWC nanoparticles with LMWC having 20 kDa weight average molecular weight (Mw) were then prepared by solvent evaporation method. The resultant nanoparticles were spherical with a narrow particle size distribution. LMWC nanoparticles loaded with insulin as a model drug were prepared. The average entrapment efficiency of insulin could reach up to 95.54%. The in vitro drug release profiles from the nanoparticles showed an initial burst of release in the first 2 h, followed by zero order release kinetics. In vivo pharmacodynamics of chitosan nanoparticles containing insulin showed that the nanoparticles showed some hypoglycemic activity. Compared with an insulin solution, a relative bioavailability of 0.737 was observed for four times the dosage of insulin in the chitosan nanoparticles after pulmonary administration.  相似文献   

10.
为提高破伤风免疫马匹的血浆抗体效价,应用不同佐剂配制TT抗原,进行马匹超免疫比较研究;采用FIA和植物油双佐剂包被与单佐剂包被的TT抗原,注射马匹进行超免疫,比较三组血浆的效价;结果显示,双佐剂抗原较单佐剂的免疫效果好,但可能对马匹刺激较强,有待调整注射剂量和免疫程序。  相似文献   

11.
Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor.  相似文献   

12.
肺炎链球菌18C型糖蛋白结合物的制备及其免疫原性   总被引:1,自引:0,他引:1  
制备肺炎链球菌18C型荚膜多糖-破伤风类毒素结合物(CPS-TT),测定结合物的理化性质,抗原特异性及其在动物中的免疫原性。结果显示,结合物能与相应的多糖和破伤风抗血清形成明显的沉淀线,蛋白/多糖比率为1.86,结合物分子大小(Kd值)为0.058。注射小鼠后可诱导明显的抗体应答,而且随着注射针次的增加,抗体反应水平明显增高,显示加强效应。结果表明,制备的肺炎链球菌糖蛋白结合物抗原性良好,具有胸腺依赖性的特性,在小鼠中显示较好的免疫原性。  相似文献   

13.
Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.  相似文献   

14.
The aim of this work was to produce and characterize cetyl palmitate-based solid lipid nanoparticles (SLN) containing insulin, and to evaluate the potential of these colloidal carriers for oral administration. SLN were prepared by a modified solvent emulsification-evaporation method based on a w/o/w double emulsion. The particle size, zeta potential and association efficiency of unloaded and insulin-loaded SLN were determined and were found to be around 350 nm, negatively charged and the insulin association efficiency was over 43%. After oral administration of insulin-loaded SLN to diabetic rats, a considerable hypoglycemic effect was observed during 24 hours. These results demonstrated that SLN promote the oral absorption of insulin.  相似文献   

15.
The identification tests for adsorbed diphtheria, tetanus and pertussis vaccines, which are required by the European Pharmacopoeia to be undertaken in animals, may be replaced by precipitation tests, for instance in agaros gels. Such in vitro tests eliminate the use of animals and are less expensive and time-consuming. The single radial immunodiffusion technique is a suitable semiquantitative test, while the double diffusion test is necessary for the investigation of complete or partial identity. The precipitates obtained in the single radial diffusion tests and in double diffusion tests with diphtheria toxoid were visible without staining; those obtained in the double diffusion tests with tetanus toxoid were weaker and staining was sometimes needed.  相似文献   

16.
Prior to 1985 tetanus was a major cause of mortality in the free-ranging colony of rhesus monkeys on Cayo Santiago, accounting for almost a quarter of annual deaths. In 1985 and 1986 all animals (except infants) received primary and booster doses, respectively, of tetanus toxoid. In subsequent years primary immunizations were given to all yearlings, and boosters were administered to all 2-year-old animals during the annual capture of the colony. The main objectives of the tetanus immunization program were to reduce the pain and suffering caused by tetanus infections and to decrease mortality in the colony. Other objectives were to evaluate the efficacy of the two-dose tetanus toxoid immunization protocol and to determine whether additional boosters might be required to provide adequate long-term protection against tetanus infections. The immediate effect of the mass immunization program was the elimination of clinical tetanus infections in the population and a 42.2% reduction in the overall mortality rate. Since the immunization program began, no cases of tetanus have been observed in the colony, except in two unimmunized infants, and it has not been necessary to give tertiary injections of tetanus toxoid to maintain protection against infection. A sample collected in 2004 of the original cohort of monkeys immunized in 1985 and 1986 showed that 93.3% (14/15) had protective tetanus antibody titers (>0.01 IU/ml) at the ages of 20-23 years, which is close to the life expectancy of the Cayo Santiago rhesus macaques. Two intramuscular doses of tetanus toxoid provided long-term, if not lifelong, protection against tetanus for rhesus monkeys living in a tropical clime where tetanus is enzootic and the risk of infection is great.  相似文献   

17.
用超滤、硫酸铵二段盐析法取代等电点沉淀法后,精制破伤风类毒素(精破类)的纯度由807Lf/mgPN提高到1883Lf/mgPN,纯度提高一倍以上。使用双胨培养基取代酪素培养基后,产毒水平由47Lf/ml提高到88Lf/ml(t=6.46,p<0.001);用新法精制后,精破类纯度分别为1949Lf/mgPN及1785Lf/mgPN(t=0.334,p>0.05),引用双胨培养基后可提高产毒水平,但不影响精破类的纯度。  相似文献   

18.
Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 23 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.  相似文献   

19.
The present investigation was aimed at developing cytarabine-loaded poly(lactide-coglycolide) (PLGA)-based biodegradable nanoparticles by a modified nanoprecipitation which would have sustained release of the drug. Nine batches were prepared as per 32 factorial design to optimize volume of the co-solvent (0.22–0.37 ml) and volume of non-solvent (1.7–3.0 ml). A second 32 factorial design was used for optimization of drug: polymer ratio (1:5) and stirring time (30 min) based on the two responses, mean particle size (125 ± 2.5 nm), and percentage entrapment efficiency (21.8 ± 2.0%) of the Cyt-PLGA nanoparticles. Optimized formulation showed a zeta potential of −29.7 mV indicating good stability; 50% w/w of sucrose in Cyt-PLGA NP was added successfully as cryoprotectant during lyophilization for freeze-dried NPs and showed good dispersibility with minimum increase in their mean particle sizes. The DSC thermograms concluded that in the prepared PLGA NP, the drug was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. In vitro drug release from the pure drug was complete within 2 h, but was sustained up to 24 h from PLGA nanoparticles with Fickian diffusion. Stability studies showed that the developed PLGA NPs should be stored in the freeze-dried state at 2–8°C where they would remain stable in terms of both mean particle size and drug content for 2 months.  相似文献   

20.
The aim of this study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of a lipid lowering agent, fenofibrate (FEN). FEN-loaded NLCs (FEN-NLCs) were prepared by hot homogenization followed by an ultrasonication method using Compritol 888 ATO as a solid lipid, Labrafil M 1944CS as a liquid lipid, and soya lecithin and Tween 80 as emulsifiers. NLCs were characterized in terms of particle size and zeta pote\ntial, surface morphology, encapsulation efficiency, and physical state properties. Bioavailability studies were carried out in rats by oral administration of FEN-NLC. NLCs exhibited a spherical shape with a small particle size (84.9 ± 4.9 nm). The drug entrapment efficiency was 99% with a loading capacity of 9.93 ± 0.01% (w/w). Biphasic drug release manner with a burst release initially, followed by prolonged release was depicted for in vitro drug release studies. After oral administration of the FEN-NLC, drug concentration in plasma and AUCt-∞ was fourfold higher, respectively, compared to the free FEN suspension. According to these results, FEN-NLC could be a potential delivery system for improvement of loading capacity and control of drug release, thus prolonging drug action time in the body and enhancing the bioavailability.KEY WORDS: bioavailability, fenofibrate, nanoparticles, nanostructured lipid carriers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号