首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model to simulate the transport of suspended sediment in tidal estuaries is presented. The model is applied to the two large European estuaries the Tagus (Portugal) and the Scheldt (Belgium-The Netherlands). Calculated suspended sediment concentrations compare favourably with observations in the Tagus (r=0.84) and in the Scheldt (r=0.73). The parametrization scheme indicates that the bottom content of fine sediment is correlated with depth in the Tagus; but a different relationship is used in the Scheldt. Because of tidal range differences, average suspended sediment concentrations are lower in the Tagus (80 mg l−1) than in the Scheldt (130 mg l−1), but a larger relative variation between spring and neap tide concentrations may occur in the Tagus.  相似文献   

2.
This study reports on the density, growth, and production response of the dominant black fly, Prosimulium martini, to whole river fertilization of the Kuparuk River in arctic Alaska during the summer of 1984. Beginning in 1983, a long term study of fertilization effects was initiated in the Kuparuk River. Increased nutrient supply stimulated algal and microbial biomass and microbial activity, which in turn affected the larval growth and abundance of Prosimulium. This experiment allowed us to isolate the effects of nutrient supply from other factors in determining black fly growth and abundance. Phosphorus addition had the following indirect effects on Prosimulium: growth was higher, but abundance decreased in the enriched section, leading to a net decrease in secondary production from 2.62 g m−2 yr−1 to 0.77 g m−2 yr−1. Prosimulium emergence rates were not measureably affected. The decrease in abundance and production appears to be a result of competitive displacement by the caddisfly Brachycentrus americanus which increased in abundance in the fertilized section of the river.  相似文献   

3.
Phosphorus (P) dynamics in the agriculturally-dominated Minnesota River (USA) were examined in the lower 40 mile reach in relation to hydrology, loading sources, suspended sediment, and chlorophyll to identify potential biotic and abiotic controls over concentrations of soluble P and the recycling potential of particulate P during transport to the Upper Mississippi River. Within this reach, wastewater treatment plant (WWTP) contributions as soluble reactive P (SRP) were greatest during very low discharge and declined with increasing discharge and nonpoint source P loading. Concentrations of SRP declined during low discharge in conjunction with increases in chlorophyll, suggesting biotic transformation to particulate P via phytoplankton uptake. During higher discharge periods, SRP was constant at ~0.115 mg l−1 and coincided with an independently measured equilibrium P concentration (EPC) for suspended sediment in the river, suggesting abiotic control over SRP via phosphate buffering. Particulate P (PP) accounted for 66% of the annual total P load. Redox-sensitive PP, estimated using extraction procedures, represented 43% of the PP. Recycling potential of this load via diffusive sediment P flux under anoxic conditions was conservatively estimated as ~17 mg m−2 d−1 using published regression equations. The reactive nature and high P recycling potential of suspended sediment loads in the Minnesota River has important consequences for eutrophication of the Upper Mississippi River.  相似文献   

4.
We investigated controls on stream sediment denitrification in nine headwater streams in the Kalamazoo River Watershed, Michigan, USA. Factors influencing denitrification were determined by using experimental assays based on the chloramphenicol-amended acetylene inhibition technique. Using a coring technique, we found that sediment denitrification was highest in the top 5 cm of the benthos and was positively related to sediment organic content. To determine the effect of overlying water quality on sediment denitrification, first-order stream sediments were assayed with water from second- and third-order downstream reaches, and often showed higher denitrification rates relative to assays using site-specific water from the first-order stream reach. Denitrification was positively related to nitrate (NO3 ) concentration, suggesting that sediments may have been nutrient-limited. Using stream-incubated inorganic substrata of varying size classes, we found that finer-grained sand showed higher rates of denitrification compared to large pebbles, likely due to increased surface area per volume of substratum. Denitrification was measurable on both inorganic substrata and fine particulate organic matter loosely associated with inorganic particles, and denitrification rates were related to organic content. Using nutrient-amended denitrification assays, we found that sediment denitrification was limited by NO3 or dissolved organic carbon (DOC, as dextrose) variably throughout the year. The frequency and type of limitation differed with land use in the watershed: forested streams were NO3 -limited or co-limited by both NO3 and DOC 92% of the time, urban streams were more often NO3 -limited than DOC-limited, whereas agricultural stream sediments were DOC-limited or co-limited but not frequently limited by NO3 alone.  相似文献   

5.
Reef corals occur across a wide range of habitats, from offshore clear waters to nearshore sediment-laden environments. This study tests the hypothesis that corals from turbid nearshore areas have greater capacity to utilise suspended sediment as a food source than conspecifics from less turbid and midshelf areas. The hypothesis was tested on two common and widespread coral species on the Great Barrier Reef (Pocillopora damicornis and Acropora millepora). The particle clearance rates of samples from more turbid reefs were two-fourfold those of conspecifics from less turbid and midshelf reefs. Rates of sediment ingestion were generally a linear function of sediment load indicating no significant saturation within the concentration range of 1–30 mg dry weight l−1. Estimated assimilation efficiency of particulate 14C varied between 50 and 80%, and was maximised for midshelf A. millepora at the lowest sediment concentration, suggesting that heterotrophy is more efficient in oligotrophic habitats. Based on feeding-response curves, assimilation efficiencies, and published records of ambient particle concentrations, representatives of these species on turbid inshore reefs are 10–20 times more heterotrophic on suspended sediment than their conspecifics on less turbid and midshelf reefs. Accepted: 7 September 1999  相似文献   

6.
The effect of suspended sediment concentrations (SSC) on fluid turbulence in an annular flume was investigated. Flow speed was held constant at 0.57 m s−1, and the resulting turbulent conditions were recorded using a 3-D Acoustic Doppler Velocimeter (ADV) at height (z) of 8.5 cm above the bed. The suspended material was composed of a natural glacial clay made up of particles smaller than 6 μm. The SSC in the flume were increased from clear water to 4800 mg l−1 in nine discrete increments; temporal variations of SSC were monitored using three optical backscatter sensors (OBS) mounted in the flume wall at heights of 0.03, 0.10 and 0.20 m above the flume base. The results showed that turbulent intensity ( ) and energy dissipation rate (ɛ) did not change significantly between clear water and 200 mg l−1, but decreased by nearly 30% in the SSC range between 200 and 2400 mg l−1. Above 2400 mg l−1, no further decrease was observed. Analyses of the velocity variances over narrow frequency bands (0.2 Hz wide) from 0 to 12.5 Hz showed that most of the flow turbulent energy (~70–80%) was contained within the lower frequencies i.e. larger eddies, and that these eddies experienced the greatest decrease in energy due to turbidity. It is proposed that these patterns are the consequence of the increase in suspended sediment concentrations and of the vertical stratification of sediments for SSC >200 mg l−1.  相似文献   

7.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

8.
Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO3-N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO3-N concentration up to a threshold of 0.88 mg NO3 -N l−1, above which it appeared NO3-N was no longer limiting. Denitrification assays were amended seasonally with NO3-N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO3-N during fall and winter when ambient NO 3-N was low.  相似文献   

9.
To better understand the bacterial processes in river sediments, it is necessary to investigate the depth-related bacterial communities in the whole sediment profile. Sediment samples were collected to a depth of 25 cm from the Pearl River. Bacterial abundance, activity, cell-specific respiration rate, and diversity were measured, respectively, by 4′, 6-diamidino-2-phenylindole direct count, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining, electron transport system by CTC reduction, and denaturing gradient gel electrophoresis analysis of 16S rRNA amplification fragments. Results showed that the bacterial metabolism activities decreased with the sediment depth. The total bacterial abundance was highest in the surface sediment with 65.1 × 107 cells g−1, and decreased to 11.1 × 107 cells g−1 below 20 cm in the sample location that suffered from heavy sewage inputs. The active bacteria accounted for 7.50–46.7% of the total bacterial number and decreased with the sediment depth. Electron transport system by the CTC reduction showed that bacterial respiration rate declined from 1.093 μmol CTC-formazan h−1 g−1 in the surface sediment to a half in the bottom sediment, while the cell-specific respiration increased significantly with the depth from 3.56 to 93.75 fmol CTC-formazan cell−1. The bacterial diversity also changed with the depth. Beta-Proteobacteria were the dominant species in the surface sediment, whereas Delta-Proteobacteria were the main species below 10 cm. Results of canonical correspondence analysis (CCA) indicated that the distribution of bacteria was affected by the combined effect of various dissolved inorganic matter, while the respiration rate was independent of the nutrient conditions. The specific bacterial distribution contributed to not only the nutrient cycle but also enhanced pollutant decomposition in sediment of the Pearl River. The results showed that some specific bacterial species had a strong activity in the deeper layers. Therefore, the metabolic functions of the deeper bacterial species should not be neglected.  相似文献   

10.
黄土高原生态环境恶劣,水土流失严重。选择退耕还林(草)程度非常显著的陕北吴旗县所在北洛河上游为研究区,探讨黄土高原丘陵沟壑区水土流失治理及大幅度退耕背景下流域水、沙等生态要素的演变规律,分析人类活动的影响贡献程度,为黄土高原生态治理及环境效应分析提供理论依据。结果表明:在1963—2009年期间年降雨量没有显著变化背景下,同时期流域年径流量和年输沙量均呈现极显著减少趋势,年均减少率分别为0.28 mm/a和180 t km-2a-1,其突变时间均发生在1979和2002年,具有很好的同步性。与1979年前相比,20世纪70—80年代水土流失综合治理以及1999年后退耕还林(草)的事件背景,使汛期和平水期径流量逐时段减少,而枯水期径流量反而持续增加。输沙量呈持续性大幅度减少态势,且其减少程度远大于径流量的变化程度。水土流失综合治理和退耕还林(草)工程实施等人类活动,对流域径流量减少的影响贡献程度分别为38.2%和51.4%,对输沙量减少的影响程度分别为74.7%和86.7%。研究结果提示,黄土高原生态环境的大幅度改善在区域尺度上已经表现出一定程度上削洪补枯的水文效应特征,以及林草措施减水更减沙的良好生物治理效果。  相似文献   

11.
A previously derived method (the tidal length—mean spring tidal range, TL-MSTR diagram) is used to predict the estuarine turbidity maximum (ETM) concentration and the residence time of the Thames Estuary. The predicted and observed residence time is 2 months. The predicted, depth-averaged ETM is 2.5 g l−1 of suspended particulate matter (SPM) at spring tides, which is much higher than that observed from surface sampling (<0.5 g l−1) and that simulated by recent models (approx. 0.6 g l−1), but is consistent with spring-tide concentrations measured throughout the water column over a tidal cycle. The observed locations of the surface 1-isohaline and 5-isohaline exhibit strong relationships with the logarithm of freshwater runoff. The observed ETM exhibits statistically significant relationships both with tidal range and the logarithm of runoff, and is generally located between the Millennium Dome and the Woolwich Reach. The apparent over-prediction of SPM afforded by the TL-MSTR diagram is unsurprising considering the removal of fine sediment by dredging and the removal of fine-sediment storage areas by embanking.  相似文献   

12.
The dissolved oxygen concentration in the sediment pore water downstream of rivers in the Lake Biwa basin was measured, and the factors affecting the dissolved oxygen concentration were analyzed. In August 2003, nine rivers (Sakai, Nakanoi, Hebisuna, Anziki, Yasu, Echi, Ane, Oh, and Ohura) were surveyed. The dissolved oxygen was depleted in the sediment pore water of the rivers with a high proportion of particles less than 250 μm in size. For these rivers, the difference between the dissolved oxygen concentrations of the river surface water and the pore water was large, ranging from −9.54 to −5.26 mg L−1. It was found that the proportion of land turned to paddy fields has an effect on the percentage of the particles below 250 μm (standard partial regression coefficient = 0.807, p = 0.023). These results suggest that, in the Lake Biwa basin, the sedimentation of the fine particles released from paddy fields results in poor dissolved oxygen in the river sediment downstream. In addition, the water flow conditions in small- and medium-scale rivers without headwaters also affect the sedimentation of suspended particles.  相似文献   

13.
Abstract A principle of the cross-scale interaction (CSI) framework is that disturbance-induced landscape changes resulting in coarser-grained spatial structure may non-linearly amplify transfer processes across scales. We studied suspended sediment losses at two spatial scales (0.24 m2 plots and ca. 0.25 ha hillslopes of about 140 m in length) in a semiarid savanna landscape to determine whether the spatial structure of grassy and bare soil areas introduced a non-linear amplification of sediment loss. Sediment loss rates from 0.24 m2 bare plots averaged 1.527 t ha−1 y−1, which was 23 times the loss rate from nearby grassy plots (0.066 t ha−1 y−1). These rates were then extrapolated linearly to two hillslopes separated by only 200 m and having similar total grass cover, slope and soil type but differing in the spatial structure of bare soil patches. The coarse-grained hillslope had a large bare patch on its lower slope, whereas the fine-grained hillslope had no bare soil patches when quantified at a 4 m grid-cell resolution. Measured sediment loss from the fine-grained hillslope averaged 0.050 t ha−1 y−1, whereas the average sediment loss from the coarse-grained hillslope was 2.133 t ha−1 y−1. By linearly extrapolating from the plot scale, the expected sediment loss for the fine-grained hillslope was 0.066 t ha−1 y−1, which is similar to that observed. The expected sediment loss for the coarse-grained hillslope was 0.855 t ha−1 y−1, where linear extrapolation assumed a 46:54 ratio of bare to grassy plots and that the spatial arrangement of plots does not affect sediment loss processes. For the coarse-grained hillslope observed sediment loss is 2.5 times greater than that expected by linear extrapolation from the plot scale. This result indicates a cross-scale interaction related to spatial configuration of patches. We suggest that there were non-linearities in hillslope ecohydrological transfer processes (runoff, erosion) across scales due to a specific patch configuration that greatly amplified sediment loss because the pattern failed to slow runoff and retain sediment before it entered a creek. This example supports the CSI framework and indicates the importance of considering the effect of spatial structure when predicting system dynamics at different scales.  相似文献   

14.
Abstract In acidic mining-impacted lake sediments, the microbial reduction of Fe(III) is the dominant electron-accepting process, whereas the reduction of sulfate seems to be restricted to a narrow sediment zone of elevated pH and lower amounts of total and reactive iron. To evaluate the microbial heterogeneity and the commensal interactions of the microbial community, the flow of supplemental carbon and reductant was evaluated in four different zones of the sediment in anoxic microcosms at the in situ temperature of 12°C. Substrate consumption, product formation, and the potential to reduce Fe(III) and sulfate were similar with both upper and lower sediment zones. In the upper acidic iron-rich sediment zone, the rate of Fe(II) formation 204 nmol ml−1 d−1 was enhanced to 833 nmol ml−1 d−1 and 462 nmol ml−1 d−1 by supplemental glucose and H2, respectively. Supplemental lactate and acetate were not consumed under acidic conditions and decreased the rate of Fe(II) formation to 130 nmol ml−1 d−1 and 52 nmol ml−1 d−1, respectively. When the pH of the upper sediment increased above pH 5, acetate-dependent reduction of sulfate was initiated even though the pool of Fe(III) was not depleted. In deeper sediment zones with elevated pH, the rapid consumption of acetate was always coincident to a decrease in the concentration of sulfate and soluble Fe(II), indicating the formation of Fe(II) sulfides. Although the reduction of Fe(III) was still an ongoing process in deeper sediment zones, the formation of Fe(II) was only slightly enhanced by the consumption of glucose or cellobiose, but not by H2 or acetate. H2-utilizing acetogens seemed to be involved in the consumption of H2. These collective results indicated (i) that the reduction of Fe(III) predominated over the reduction of sulfate as long as the sediment remained acidic and carbon-limited, and (ii) that the sulfate-reducing microbiota in this heterogeneous sediment were better adapted to the geochemical gradients present than were other neutrophilic dissimilatory Fe(III) reducers. Received: 17 February 2000; Accepted: 22 June 2000; Online Publication: 28 August 2000  相似文献   

15.
Despite the recognition that increased suspended sediment concentration (SSC) is a correlate of imperilment for native riverine fishes, research is limited on the effects of SSC on small non-game species. This study quantifies the impact of suspended sediment on fish growth and gill condition of two stream-dwelling minnows. Specific growth rate (i.e., percent change in mass per day) and gill condition (i.e., lamellar thickness and interlamellar area) were measured in young-of-year whitetail shiners, Cyprinella galactura, and federally threatened spotfin chubs, Erimonax monachus, exposed for 21 days to increased SSC (0, 25, 50, 100, and 500 mg L−1). Exposure to elevated SSC caused a significant decrease in specific growth rate in both species and at all life stages tested. The effect of increased SSC was greatest in spotfin chubs, which exhibited a 15-fold decrease in specific growth rate at the highest treatment (500 mg L−1). Effects of increased SSC were least for 8–9-month-old whitetail shiners, which had growth rates similar to controls for 25, 50, and 100 mg L−1 treatments. These minnows exhibited a greater response to increasing SSC than salmonids at low to moderate SSC, and a lesser response at higher sediment levels. Gill damage was minimal at the three lowest treatment levels, moderate at 100 mg L−1 and severe at 500 mg L−1, indicating that respiratory surfaces of upland minnows may be much more sensitive than other species. Specific growth rate decreased significantly with increasing gill lamellar thickness, suggesting that respiratory impairment is one mechanism responsible for negative impacts of excessive sediment on small riverine fishes.  相似文献   

16.
This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m−2 d−2) and chlorophylla (4.1 μg 1−1) values were found to be comparable with measurements from other Arctic regions. Water column N-fixation rates were low (<0.02 μmol N m−1 d−1), but comparable with other estuarine systems. Despite a constant low temperature in the bottom waters (-1.0 to -1.8°C), a high sedimentary O2 uptake (740 μmol m−2 h−2) was observed and was primarily caused by the presence of benthic infauna. Bioturbation by benthic infauna was reflected in both homogeneous210Pb and137Cs profiles in the upper 4 cm of the sediment. Permanent accumulation within Young Sound was measured to 0.12 cm/year corresponding to 153 mmol C m−2 year−1 and 15 mmol N m−2 year−1. Rates of nitrification (22 μmol m−2 h−1) and denitrification (9 μmol m−2 h−1) were comparable with rates reported for other sediments with much higher environmental temperatures. Suphate reduction rates integrated over the upper 12 cm of the sediment were calculated to be 44 μmol m−2h−1.  相似文献   

17.
The physical and chemical processes operating in the River Tamar Estuary (south-west England) have been comprehensively described and reported in the literature. There are well-established gradients of salinity, suspended sediment and oxygen which vary both on short-term (tidal) and long-term (seasonal) cycles. Freshwater runoff, the main factor determining salinity distribution, is also the cause of the high variability in suspended sediment concentrations. The biological processes are less well studied and information on the link between the benthic and pelagic systems is particularly lacking. Mysids, through their role as detritivores and as a major component in the diet of some fish, provide this link. Of the four species of mysid distributed longitudinally in the Tamar Estuary, the most abundant isMesopodopsis slabberi which occurs between 5 and 25 km from the estuary head. Observations over an annual cycle have shown marked seasonal changes in both abundance and distribution in the estuary. During winter and spring, densities remained generally low (<50 m−3) but, as water temperatures increased, the density increased and reachedca 1200 individuals m−3 in July. There was a shift in the longitudinal distribution ofM. slabberi in response to changes in the position of the salinity gradient. Adults comprised the majority of the population in salinities less than 10‰ whereas juveniles and immature animals were distributed over a wider area than the adults and occurred in water of higher salinity than the main adult distribution.M. slabberi appears to utilise the two-layered estuarine circulation to maintain its position in the estuary.  相似文献   

18.
Rapid Nitrate Loss and Denitrification in a Temperate River Floodplain   总被引:3,自引:0,他引:3  
Nitrogen (N) pollution is a problem in many large temperate zone rivers, and N retention in river channels is often small in these systems. To determine the potential for floodplains to act as N sinks during overbank flooding, we combined monitoring, denitrification assays, and experimental nitrate (NO3 -N) additions to determine how the amount and form of N changed during flooding and the processes responsible for these changes in the Wisconsin River floodplain (USA). Spring flooding increased N concentrations in the floodplain to levels equal to the river. As discharge declined and connectivity between the river and floodplain was disrupted, total dissolved N decreased over 75% from 1.41 mg l−1, equivalent to source water in the Wisconsin River on 14 April 2001, to 0.34 mg l−1 on 22 April 2001. Simultaneously NO3 -N was attenuated almost 100% from 1.09 to <0.002 mg l−1. Unamended sediment denitrification rates were moderate (0–483 μg m−2 h−1) and seasonally variable, and activity was limited by the availability of NO 3 -N on all dates. Two experimental NO3 -N pulse additions to floodplain water bodies confirmed rapid NO3 -N depletion. Over 80% of the observed NO 3 -N decline was caused by hydrologic export for addition #1 but only 22% in addition #2. During the second addition, a significant fraction (>60%) of NO3 -N mass loss was not attributable to hydrologic losses or conversion to other forms of N, suggesting that denitrification was likely responsible for most of the NO3 -N disappearance. Floodplain capacity to decrease the dominant fraction of river borne N within days of inundation demonstrates that the Wisconsin River floodplain was an active N sink, that denitrification often drives N losses, and that enhancing connections between rivers and their floodplains may enhance overall retention and reduce N exports from large basins.  相似文献   

19.
The Sava River and its tributaries in Slovenia represent waters strongly influenced by chemical weathering of limestone and dolomite. The carbon isotopic compositions of dissolved inorganic carbon (DIC) and suspended organic carbon (POC) fractions as well as major solute concentrations yielded insights into the origin and fluxes of carbon in the upper Sava River system. The major solute composition was dominated by carbonic acid dissolution of calcite and dolomite. Waters were generally supersaturated with respect to calcite, and dissolved CO2 was about fivefold supersaturated relative to the atmosphere. The δ13C of DIC ranged from −13.5 to −3.3‰. Mass balances for riverine inorganic carbon suggest that carbonate dissolution contributes up to 26%, degradation of organic matter ∼17% and exchange with atmospheric CO2 up to 5%. The concentration and stable isotope diffusion models indicated that atmospheric exchange of CO2 predominates in streams draining impermeable shales and clays while in the carbonate-dominated watersheds dissolution of the Mesozoic carbonates predominates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号