共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and reproduction are two essential life‐history traits for fungi. Understanding life‐history strategies provides insight into the environmental adaption of species. Here, we investigated the colonial morphology, vegetative growth, and asexual reproduction of the ascomycete fungus Bionectria ochroleuca in response to a variety of environmental conditions. We demonstrated that the increased temperature from 15 to 25°C induced mycelial growth and conidiation in B. ochroleuca. We also found that the optimal temperatures for mycelial growth and conidial formation in this fungus species were 25 and 30°C, respectively. However, as the temperature increased from 25 to 30°C, mycelial growth was suppressed, but the total number of conidia was significantly increased. The shift in light–dark cycles dramatically changed the morphological features of the colonies and affected both vegetative growth and asexual reproduction. Under incubation environments of alternating light and dark (16:8 and 8:16 light:dark cycles), conidiophores and conidia in the colonies formed dense‐sparse rings and displayed synchronous wave structures. When the light duration was prolonged in the sequence of 0, 8, 16, and 24 hr per day, mycelial growth was suppressed, but conidiation was promoted. Together, our results indicate that temperature and light period may trigger a trade‐off between vegetative growth and asexual reproduction in B. ochroleuca. 相似文献
2.
Severin Schink Constantin Ammar YuFang Chang Ralf Zimmer Markus Basan 《Molecular systems biology》2022,18(12)
Bacteria reorganize their physiology upon entry to stationary phase. What part of this reorganization improves starvation survival is a difficult question because the change in physiology includes a global reorganization of the proteome, envelope, and metabolism of the cell. In this work, we used several trade‐offs between fast growth and long survival to statistically score over 2,000 Escherichia coli proteins for their global correlation with death rate. The combined ranking allowed us to narrow down the set of proteins that positively correlate with survival and validate the causal role of a subset of proteins. Remarkably, we found that important survival genes are related to the cell envelope, i.e., periplasm and outer membrane, because the maintenance of envelope integrity of E. coli plays a crucial role during starvation. Our results uncover a new protective feature of the outer membrane that adds to the growing evidence that the outer membrane is not only a barrier that prevents abiotic substances from reaching the cytoplasm but also essential for bacterial proliferation and survival. 相似文献
3.
Severin Josef Schink Dimitris Christodoulou Avik Mukherjee Edward Athaide Viktoria Brunner Tobias Fuhrer Gary Andrew Bradshaw Uwe Sauer Markus Basan 《Molecular systems biology》2022,18(1)
Central carbon metabolism is highly conserved across microbial species, but can catalyze very different pathways depending on the organism and their ecological niche. Here, we study the dynamic reorganization of central metabolism after switches between the two major opposing pathway configurations of central carbon metabolism, glycolysis, and gluconeogenesis in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida. We combined growth dynamics and dynamic changes in intracellular metabolite levels with a coarse‐grained model that integrates fluxes, regulation, protein synthesis, and growth and uncovered fundamental limitations of the regulatory network: After nutrient shifts, metabolite concentrations collapse to their equilibrium, rendering the cell unable to sense which direction the flux is supposed to flow through the metabolic network. The cell can partially alleviate this by picking a preferred direction of regulation at the expense of increasing lag times in the opposite direction. Moreover, decreasing both lag times simultaneously comes at the cost of reduced growth rate or higher futile cycling between metabolic enzymes. These three trade‐offs can explain why microorganisms specialize for either glycolytic or gluconeogenic substrates and can help elucidate the complex growth patterns exhibited by different microbial species. 相似文献
4.
In many insect taxa, there is a well‐established trade‐off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade‐off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long‐winged species was significantly higher than that of short‐winged and wingless species (p < .01), while GSI of wingless species was higher than that of long‐winged and short‐winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = −.2649 for male and −.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long‐winged individuals are flight capable at the expense of reproduction, while short‐winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade‐off between flight and reproduction in Acridoidea. 相似文献
5.
Juliano Morimoto 《Ecology and evolution》2022,12(8)
Animals regulate their nutrient consumption to maximize the expression of fitness traits with competing nutritional needs (“nutritional trade‐offs”). Nutritional trade‐offs have been studied using a response surface modeling approach known as the Geometric Framework for nutrition (GF). Current experimental design in GF studies does not explore the entire area of the nutritional space resulting in performance landscapes that may be incomplete. This hampers our ability to understand the properties of the performance landscape (e.g., peak shape) from which meaningful biological insights can be obtained. Here, I tested alternative experimental designs to explore the full range of the performance landscape in GF studies. I compared the performance of the standard GF design strategy with three alternatives: hexagonal, square, and random points grid strategies with respect to their accuracy in reconstructing baseline performance landscapes from a landmark GF dataset. I showed that standard GF design did not reconstruct the properties of baseline performance landscape appropriately particularly for traits that respond strongly to the interaction between nutrients. Moreover, the peak estimates in the reconstructed performance landscape using standard GF design were accurate in terms of the nutrient ratio but incomplete in terms of peak shape. All other grid designs provided more accurate reconstructions of the baseline performance landscape while also providing accurate estimates of nutrient ratio and peak shape. Thus, alternative experimental designs can maximize information from performance landscapes in GF studies, enabling reliable biological insights into nutritional trade‐offs and physiological limits within and across species. 相似文献
6.
Birds experience a sequence of critical events during their life cycle, and past events can subsequently determine future performance via carry‐over effects. Events during the non‐breeding season may influence breeding season phenology or productivity. Less is understood about how events during the breeding season affect individuals subsequently in their life cycle. Using stable carbon isotopes, we examined carry‐over effects throughout the annual cycle of prairie warblers (Setophaga discolor), a declining Nearctic–Neotropical migratory passerine bird. In drier winters, juvenile males that hatched earlier at our study site in Massachusetts, USA, occupied wetter, better‐quality winter habitat in the Caribbean, as indicated by depleted carbon isotope signatures. For juveniles that were sampled again as adults, repeatability in isotope signatures indicated similar winter habitat occupancy across years. Thus, hatching date of juvenile males appears to influence lifetime winter habitat occupancy. For adult males, reproductive success did not carry over to influence winter habitat occupancy. We did not find temporally consecutive “domino” effects across the annual cycle (breeding to wintering to breeding) or interseasonal, intergenerational effects. Our finding that a male''s hatching date can have a lasting effect on winter habitat occupancy represents an important contribution to our understanding of seasonal interactions in migratory birds. 相似文献
7.
Laura Hebberecht Lina MeloFlrez Fletcher J. Young W. Owen McMillan Stephen H. Montgomery 《Ecology and evolution》2022,12(6)
For many animals, the availability and provision of dietary resources can vary markedly between juvenile and adult stages, often leading to a temporal separation of nutrient acquisition and use. Juvenile developmental programs are likely limited by the energetic demands of many adult tissues and processes with early developmental origins. Enhanced dietary quality in the adult stage may, therefore, alter selection on life history and growth patterns in juvenile stages. Heliconius are unique among butterflies in actively collecting and digesting pollen grains, which provide an adult source of essential amino acids. The origin of pollen feeding has therefore previously been hypothesized to lift constraints on larval growth rates, allowing Heliconius to spend less time as larvae when they are most vulnerable to predation. By measuring larval and pupal life‐history traits across three pollen‐feeding and three nonpollen‐feeding Heliconiini, we provide the first test of this hypothesis. Although we detect significant interspecific variation in larval and pupal development, we do not find any consistent shift associated with pollen feeding. We discuss how this result may fit with patterns of nitrogen allocation, the benefits of nitrogenous stores, and developmental limitations on growth. Our results provide a framework for studies aiming to link innovations in adult Heliconius to altered selection regimes and developmental programs in early life stages. 相似文献
8.
Kathreen Bitner Grant A. Rutledge James N. Kezos Laurence D. Mueller 《Ecology and evolution》2021,11(14):9516
A collection of forty populations were used to study the phenotypic adaptation of Drosophila melanogaster larvae to urea‐laced food. A long‐term goal of this research is to map genes responsible for these phenotypes. This mapping requires large numbers of populations. Thus, we studied fifteen populations subjected to direct selection for urea tolerance and five controls. In addition, we studied another twenty populations which had not been exposed to urea but were subjected to stress or demographic selection. In this study, we describe the differentiation in these population for six phenotypes: (1) larval feeding rates, (2) larval viability in urea‐laced food, (3) larval development time in urea‐laced food, (4) adult starvation times, (5) adult desiccation times, and (6) larval growth rates. No significant differences were observed for desiccation resistance. The demographically/stress‐selected populations had longer times to starvation than urea‐selected populations. The urea‐adapted populations showed elevated survival and reduced development time in urea‐laced food relative to the control and nonadapted populations. The urea‐adapted populations also showed reduced larval feeding rates relative to controls. We show that there is a strong linear relationship between feeding rates and growth rates at the same larval ages feeding rates were measured. This suggests that feeding rates are correlated with food intake and growth. This relationship between larval feeding rates, food consumption, and efficiency has been postulated to involve important trade‐offs that govern larval evolution in stressful environments. Our results support the idea that energy allocation is a central organizing theme in adaptive evolution. 相似文献
9.
Pauliina A. Ahti Silva UusiHeikkil Timo J. Marjomki Anna Kuparinen 《Ecology and evolution》2021,11(19):13363
Senescence is often described as an age‐dependent increase in natural mortality (known as actuarial senescence) and an age‐dependent decrease in fecundity (known as reproductive senescence), and its role in nature is still poorly understood. Based on empirical estimates of reproductive and actuarial senescence, we used mathematical simulations to explore how senescence affects the population dynamics of Coregonus albula, a small, schooling salmonid fish. Using an empirically based eco‐evolutionary model, we investigated how the presence or absence of senescence affects the eco‐evolutionary dynamics of a fish population during pristine, intensive harvest, and recovery phases. Our simulation results showed that the presence or absence of senescence affected how the population responded to the selection regime. At an individual level, gillnetting caused a larger decline in asymptotic length when senescence was present, compared to the nonsenescent population, and the opposite occurred when fishing was done by trawling. This change was accompanied by evolution toward younger age at maturity. At the population level, the change in biomass and number of fish in response to different fishery size‐selection patterns depended on the presence or absence of senescence. Since most life‐history and fisheries models ignore senescence, they may be over‐estimating reproductive capacity and under‐estimating natural mortality. Our results highlight the need to understand the combined effects of life‐history characters such as senescence and fisheries selection regime to ensure the successful management of our natural resources. 相似文献
10.
Overwintering is a challenging period in the life of temperate insects. A limited energy budget characteristic of this period can result in reduced investment in immune system. Here, we investigated selected physiological and immunological parameters in laboratory‐reared and field‐collected harlequin ladybirds (Harmonia axyridis). For laboratory‐reared beetles, we focused on the effects of winter temperature regime (cold, average, or warm winter) on total haemocyte concentration aiming to investigate potential effects of ongoing climate change on immune system in overwintering insects. We recorded strong reduction in haemocyte concentration during winter; however, there were only limited effects of winter temperature regime on changes in haemocyte concentration in the course of overwintering. For field‐collected beetles, we measured additional parameters, specifically: total protein concentration, antimicrobial activity against Escherichia coli, and haemocyte concentration before and after overwintering. The field experiment did not investigate effects of winter temperature, but focused on changes in inducibility of insect immune system during overwintering, that is, measured parameters were compared between naïve beetles and those challenged by Escherichia coli. Haemocyte concentration decreased during overwintering, but only in individuals challenged by Escherichia coli. Prior to overwintering, the challenged beetles had a significantly higher haemocyte concentration compared to naïve beetles, whereas no difference was observed after overwintering. A similar pattern was observed also for antimicrobial activity against Escherichia coli as challenged beetles outperformed naïve beetles before overwintering, but not after winter. In both sexes, total protein concentration increased in the course of overwintering, but females had a significantly higher total protein concentration in their hemolymph compared to males. In general, our results revealed that insect’s ability to respond to an immune challenge is significantly reduced in the course of overwintering. 相似文献
11.
Vanja T. Michel Matthias Tschumi Beat NaefDaenzer Herbert Keil Martin U. Grüebler 《Ecology and evolution》2022,12(4)
Although the costs of reproduction are predicted to vary with the quality of the breeding habitat thereby affecting population dynamics and life‐history trade‐offs, empirical evidence for this pattern remains sparse and equivocal. Costs of reproduction can operate through immediate ecological mechanisms or through delayed intrinsic mechanisms. Ignoring these separate pathways might hinder the identification of costs and the understanding of their consequences. We experimentally investigated the survival costs of reproduction for adult little owls (Athene noctua) within a gradient of habitat quality. We supplemented food to nestlings, thereby relieving the parents’ effort for brood provisioning. We used radio‐tracking and Bayesian multistate modeling based on marked recapture and dead recovery to estimate survival rates of adult little owls across the year as a function of food supplementation and habitat characteristics. Food supplementation to nestlings during the breeding season increased parental survival not only during the breeding season but also during the rest of the year. Thus, the low survival of parents of unfed broods likely represents both, strong ecological and strong intrinsic costs of reproduction. However, while immediate ecological costs occurred also in high‐quality habitats, intrinsic costs carrying over to the post‐breeding period occurred only in low‐quality habitats. Our results suggest that immediate costs resulting from ecological mechanisms such as predation, are high also in territories of high habitat quality. Long‐term costs resulting from intrinsic trade‐offs, however, are only paid in low‐quality habitats. Consequently, differential effects of habitat quality on immediate ecological and delayed intrinsic mechanisms can mask the increase of costs of reproduction in low‐quality breeding habitats. Intrinsic costs may represent an underrated mechanism of habitat quality affecting adult survival rate thereby considerably accelerating population decline in degrading habitats. This study therefore highlights the need for a long‐term perspective to fully assess the costs of reproduction and the role of habitat quality in modifying these costs. 相似文献
12.
Adult size, egg size, fecundity, and mass of gonads are affected by trade‐offs between reproductive investment and environmental conditions shaping the evolution of life history traits among populations for widely distributed species. Coho salmon Oncorhynchus kisutch have a large geographic distribution, and different environmental conditions are experienced by populations throughout their range. We examined the effect of environmental variables on female size, egg size, fecundity, and reproductive investment of populations of Coho Salmon from across British Columbia using an information theoretic approach. Female size increased with latitude and decreased with migration distance from the ocean to spawning locations. Egg size was lowest for intermediate intragravel temperature during incubation, decreased with migration distance, but increased in rivers below lakes. Fecundity increased with latitude, warmer temperature during the spawning period, and river size, but decreased in rivers below lakes compared with rivers with tributary sources. Relative gonad size increased with latitude and decreased with migration distance. Latitude of spawning grounds, migratory distance, and temperatures experienced by a population, but also hydrologic features—river size and headwater source—are influential in shaping patterns of reproductive investment, particularly egg size. Although, relative gonad size varied with latitude and migration distance, how gonadal mass was partitioned gives insight into the trade‐off between egg size and fecundity. The lack of an effect of latitude on egg size suggests that local optima for egg size related to intragravel temperature may drive the variation in fecundity observed among years. 相似文献
13.
David J. A. Wood Scott Powell Paul C. Stoy Lindsey L. Thurman Erik A. Beever 《Ecology and evolution》2021,11(16):11168
Vegetation phenology—the seasonal timing and duration of vegetative phases—is controlled by spatiotemporally variable contributions of climatic and environmental factors plus additional potential influence from human management. We used land surface phenology derived from the Advanced Very High Resolution Radiometer and climate data to examine variability in vegetation productivity and phenological dates from 1989 to 2014 in the U.S. Northwestern Plains, a region with notable spatial heterogeneity in climate, vegetation, and land use. We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual‐resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season‐long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season‐long productivity. Annual precipitation and temperature had strong explanatory power for productivity‐related phenology measures but predicted date‐based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns. For example, models of areas exhibiting greening or browning should account for climate, anthropogenic influence, and natural disturbances. Investigating multiple aspects of phenology to describe growing‐season dynamics provides a richer understanding of spatiotemporal patterns that can be used for predicting ecosystem responses to future climates and land‐use change. Such understanding allows for clearer interpretation of results for conservation, wildlife, and land management. 相似文献
14.
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade‐offs and correlations among individual‐level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long‐term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%–63%) variation in leaf‐level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait‐based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size. 相似文献
15.
《Protein science : a publication of the Protein Society》2021,30(11):2206
Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) is a pathogenic coronavirus causing COVID‐19 infection. The interaction between the SARS‐CoV‐2 spike protein and the human receptor angiotensin‐converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide‐thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID‐19. However, the molecular‐level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID‐19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID‐19 infection or reducing the severity of the disease. 相似文献
16.
Madeleine G. Lohman Thomas V. Riecke Perry J. Williams James S. Sedinger 《Ecology and evolution》2021,11(21):15164
Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment. 相似文献
17.
18.
Doxorubicin (Dox) is a broad‐spectrum antitumour agent; however, its clinical application is impeded due to the cumulative cardiotoxicity. The present study aims to investigate the role and underlying mechanisms of microRNA‐495‐3p (miR‐495‐3p) in Dox‐induced cardiotoxicity. Herein, we found that cardiac miR‐495‐3p expression was significantly decreased in Dox‐treated hearts, and that the miR‐495‐3p agomir could prevent oxidative stress, cell apoptosis, cardiac mass loss, fibrosis and cardiac dysfunction upon Dox stimulation. In contrast, the miR‐495‐3p antagomir dramatically aggravated Dox‐induced cardiotoxicity in mice. Besides, we found that the miR‐495‐3p agomir attenuated, while the miR‐495‐3p antagomir exacerbated Dox‐induced oxidative stress and cellular injury in vitro. Mechanistically, we demonstrated that miR‐495‐3p directly bound to the 3′‐untranslational region of phosphate and tension homology deleted on chromosome ten (PTEN), downregulated PTEN expression and subsequently activated protein kinase B (PKB/AKT) pathway, and that PTEN overexpression or AKT inhibition completely abolished the cardioprotective effects of the miR‐495‐3p agomir. Our study for the first time identify miR‐495‐3p as an endogenous protectant against Dox‐induced cardiotoxicity through activating AKT pathway in vivo and in vitro. 相似文献
19.
Floris M. van Beest Rune Dietz Anders Galatius Line Anker Kyhn Signe Sveegaard Jonas Teilmann 《Ecology and evolution》2022,12(7)
Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter‐specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest‐warming semi‐enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species‐specific habitat suitability between 1997–2020 and 2091–2100. Predictor variables included environmental and climate‐sensitive oceanographic conditions in the area. Sea‐level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea‐level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter‐specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter‐specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food‐web dynamics and ecosystem functioning. 相似文献
20.
Understanding the ecological requirements and thresholds of individual species is crucial to better predict potential outcomes of climate change on species distribution. In particular, species optima and lower and upper limits along resource gradients require attention. Based on Huisman‐Olff‐Fresco (HOF) models, we determined species‐specific responses along gradients of nine environmental parameters including depth in order to estimate niche attributes of 30 deep‐sea benthic amphipods occurring around Iceland. We, furthermore, examined the relationships between niche breadth, occupancy, and geographic range assuming that species with a wider niche are spatially more widely dispersed and vice versa. Overall, our results reveal that species react very differently to environmental gradients, which is independent of the family affiliation of the respective species. We could infer a strong relationship between occupancy and geographic range and also relate this to differences in niche breadth; that is specialist species with a narrow niche had a more limited distribution and may thus be more threatened by changing environmental conditions than generalist species, which are more widespread. Given the preponderance of rare species in the deep sea, this implies that many species could be at risk. However, this must be carefully weighed against geographical data gaps in this area, given that many deep‐sea areas are severely undersampled and the true distribution of most species is unknown. After all, our results underline that an accurate taxonomic classification is of crucial importance, without which ecological niche properties cannot be determined and which is hence fundamental for the assessment and understanding of changes in biodiversity in the face of increasing human perturbations. 相似文献