首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.  相似文献   

2.
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring‘ of coexpression systems involving glial and immune signaling as well as neuronal genes.  相似文献   

3.
Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE), two-bottle choice (2BC) paradigm. We analyzed cerebral cortices (CTX) and midbrains (MB) from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to understanding of organizational principles of CTX and MB proteomes, and define potential new molecular targets for treating alcohol addiction. The integrative analysis employed here highlight the advantages of systems approaches in studying the neurobiology of alcohol addiction.  相似文献   

4.
5.
6.
It is well known that chronic, excessive consumption of alcohol can cause brain damage/structural changes in the regions important for neurocognitive function. Some of the damages are permanent, while others are reversible. Molecular mechanisms underlying alcohol-induced and/or -related brain damage are largely unknown, although it is generally believed that three factors (ethanol, nutritious and hepatic factors) play important roles. Recently, we have been employing a high-throughput proteomics technology to investigate several alcohol-sensitive brain regions from uncomplicated and hepatic cirrhosis-complicated alcoholics to understand the mechanisms of alcohol effects on the CNS at the level of protein expression. The changes of protein expression profiles in the hippocampus of alcoholic subjects were firstly demonstrated using 2D gel electrophoresis-based proteomics. Protein expression profiles identified in the hippocampus of alcoholic subjects were significantly different from those previously identified by our group in other brain regions of the same alcoholic cases, possibly indicating that these different brain regions react differently to chronic alcohol ingestion at the level of protein expression. Identified changes of protein expression associated with astrocyte and oxidative stress may indicate the possibility that increased levels of CNS ammonia and reactive oxygen species induced by alcoholic mild hepatic damage/dysfunction could cause selective damage in astrocytes of the hippocampus. Although our data did not demonstrate any evidence of direct alcohol effects to induce the alteration of protein expression in association with brain damage, high-throughput neuroproteomics approaches have proved to have the potential to dissect the mechanisms of complex brain disorders. Proteomics studies on human hippocampus, an important region for neurocognitive function and psychiatric illnesses (e.g., Alzheimer’s disease, alcoholism and schizophrenia) are still sparse, and further investigation is warranted to understand the underlying mechanisms.  相似文献   

7.
It is well known that chronic, excessive consumption of alcohol can cause brain damage/structural changes in the regions important for neurocognitive function. Some of the damages are permanent, while others are reversible. Molecular mechanisms underlying alcohol-induced and/or -related brain damage are largely unknown, although it is generally believed that three factors (ethanol, nutritious and hepatic factors) play important roles. Recently, we have been employing a high-throughput proteomics technology to investigate several alcohol-sensitive brain regions from uncomplicated and hepatic cirrhosis-complicated alcoholics to understand the mechanisms of alcohol effects on the CNS at the level of protein expression. The changes of protein expression profiles in the hippocampus of alcoholic subjects were firstly demonstrated using 2D gel electrophoresis-based proteomics. Protein expression profiles identified in the hippocampus of alcoholic subjects were significantly different from those previously identified by our group in other brain regions of the same alcoholic cases, possibly indicating that these different brain regions react differently to chronic alcohol ingestion at the level of protein expression. Identified changes of protein expression associated with astrocyte and oxidative stress may indicate the possibility that increased levels of CNS ammonia and reactive oxygen species induced by alcoholic mild hepatic damage/dysfunction could cause selective damage in astrocytes of the hippocampus. Although our data did not demonstrate any evidence of direct alcohol effects to induce the alteration of protein expression in association with brain damage, high-throughput neuroproteomics approaches have proved to have the potential to dissect the mechanisms of complex brain disorders. Proteomics studies on human hippocampus, an important region for neurocognitive function and psychiatric illnesses (e.g., Alzheimer's disease, alcoholism and schizophrenia) are still sparse, and further investigation is warranted to understand the underlying mechanisms.  相似文献   

8.
We recently reported that laminin-5, expressed by human mesenchymal stem cells (hMSC), stimulates osteogenic gene expression in these cells in the absence of any other osteogenic stimulus. Here we employ two-dimensional liquid chromatography and tandem mass spectrometry, along with the Database for Annotation, Visualization and Integrated Discovery (DAVID), to obtain a more comprehensive profile of the protein (and hence gene) expression changes occurring during laminin-5-induced osteogenesis of hMSC. Specifically, we compare the protein expression profiles of undifferentiated hMSC, hMSC cultured on laminin-5 (Ln-5 hMSC), and fully differentiated human osteoblasts (hOST) with profiles from hMSC treated with well-established osteogenic stimuli (collagen I, vitronectin, or dexamethazone). We find a marked reduction in the number of proteins (e.g., those involved with calcium signaling and cellular metabolism) expressed in Ln-5 hMSC compared to hMSC, consistent with our previous finding that hOST express far fewer proteins than do their hMSC progenitors, a pattern we call "osteogenic gene focusing." This focused set, which resembles an intermediate stage between hMSC and mature hOST, mirrors the expression profiles of hMSC exposed to established osteogenic stimuli and includes osteogenic extracellular matrix proteins (collagen, vitronectin) and their integrin receptors, calcium signaling proteins, and enzymes involved in lipid metabolism. These results provide direct evidence that laminin-5 alone stimulates global changes in gene/protein expression in hMSC that lead to commitment of these cells to the osteogenic phenotype, and that this commitment correlates with extracellular matrix production.  相似文献   

9.
10.
We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change ≥ 1.5, false discovery rate (FDR) ≤ 0.3; p < 0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling.  相似文献   

11.
12.
Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d ‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.  相似文献   

13.
14.
15.
Acute and chronic ethanol (EtOH) administration is known to affect function, surface expression, and subunit composition of γ-aminobutyric acid (A) receptors (GABAARs) in different parts of the brain, which is believed to play a major role in alcohol dependence and withdrawal symptoms. The basolateral amygdala (BLA) participates in anxiety-like behaviors including those induced by alcohol withdrawal. In the present study we assessed the changes in cell surface levels of select GABAAR subunits in the BLA of a rat model of alcohol dependence induced by chronic intermittent EtOH (CIE) treatment and long-term (>40 days) withdrawal and investigated the time-course of such changes after a single dose of EtOH (5 g/kg, gavage). We found an early decrease in surface expression of α4 and δ subunits at 1 h following single dose EtOH treatment. At 48 h post-EtOH and after CIE treatment there was an increase in α4 and γ2, while α1, α2, and δ surface expression were decreased. To relate functional changes in GABAARs to changes in their subunit composition we analyzed miniature inhibitory postsynaptic currents (mIPSCs) and the picrotoxin-sensitive tonic current (Itonic) 48 h after EtOH intoxication. The Itonic magnitude and most of the mIPSC kinetic parameters (except faster mIPSC decay) were unchanged at 48 h post-EtOH. At the same time, Itonic potentiation by acute EtOH was greatly reduced, whereas mIPSCs became significantly more sensitive to potentiation by acute EtOH. These results suggest that EtOH intoxication-induced GABAAR plasticity in the BLA might contribute to the diminished sedative/hypnotic and maintained anxiolytic effectiveness of EtOH.  相似文献   

16.
Molecular basis of the effects of shear stress on vascular endothelial cells   总被引:18,自引:0,他引:18  
Li YS  Haga JH  Chien S 《Journal of biomechanics》2005,38(10):1949-1971
Blood vessels are constantly exposed to hemodynamic forces in the form of cyclic stretch and shear stress due to the pulsatile nature of blood pressure and flow. Endothelial cells (ECs) are subjected to the shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular functions, e.g., proliferation, apoptosis, migration, permeability, and remodeling, as well as gene expression. The ECs use multiple sensing mechanisms to detect changes in mechanical forces, leading to the activation of signaling networks. The cytoskeleton provides a structural framework for the EC to transmit mechanical forces between its luminal, abluminal and junctional surfaces and its interior, including the cytoplasm, the nucleus, and focal adhesion sites. Endothelial cells also respond differently to different modes of shear forces, e.g., laminar, disturbed, or oscillatory flows. In vitro studies on cultured ECs in flow channels have been conducted to investigate the molecular mechanisms by which cells convert the mechanical input into biochemical events, which eventually lead to functional responses. The knowledge gained on mechano-transduction, with verifications under in vivo conditions, will advance our understanding of the physiological and pathological processes in vascular remodeling and adaptation in health and disease.  相似文献   

17.
Recent developments in gene array technologies, specifically cDNA microarray platforms, have made it easier to try to understand the constellation of gene alterations that occur within the CNS. Unlike an organ that is comprised of one principal cell type, the brain contains a multiplicity of both neuronal (e.g., pyramidal neurons, interneurons, and others) and noneuronal (e.g., astrocytes, microglia, oligodendrocytes, and others) populations of cells. An emerging goal of modern molecular neuroscience is to sample gene expression from similar cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subtypes and noneuronal cells. At present, an optimal methodology to assess gene expression is to evaluate single cells, either identified physiologically in living preparations, or by immunocytochemical or histochemical procedures in fixed cells in vitro or in vivo. Unfortunately, the quantity of RNA harvested from a single cell is not sufficient for standard RNA extraction methods. Therefore, exponential polymerase-chain reaction (PCR) based analyses and linear RNA amplifications, including a newly developed terminal continuation (TC) RNA amplification methodology, have been used in combination with single cell microdissection procedures to enable the use of cDNA microarray analysis within individual populations of cells obtained from postmortem brain samples as well as the brains of animal models of neurodegeneration.  相似文献   

18.
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s.  相似文献   

19.
《Epigenetics》2013,8(1):161-172
Epigenetic dysregulation contributes to the high cardiovascular disease burden in chronic kidney disease (CKD) patients. Although microRNAs (miRNAs) are central epigenetic regulators, which substantially affect the development and progression of cardiovascular disease (CVD), no data on miRNA dysregulation in CKD-associated CVD are available until now. We now performed high-throughput miRNA sequencing of peripheral blood mononuclear cells from ten clinically stable hemodialysis (HD) patients and ten healthy controls, which allowed us to identify 182 differentially expressed miRNAs (e.g., miR-21, miR-26b, miR-146b, miR-155). To test biological relevance, we aimed to connect miRNA dysregulation to differential gene expression. Genome-wide gene expression profiling by MACE (Massive Analysis of cDNA Ends) identified 80 genes to be differentially expressed between HD patients and controls, which could be linked to cardiovascular disease (e.g., KLF6, DUSP6, KLF4), to infection / immune disease (e.g., ZFP36, SOCS3, JUND), and to distinct proatherogenic pathways such as the Toll-like receptor signaling pathway (e.g., IL1B, MYD88, TICAM2), the MAPK signaling pathway (e.g., DUSP1, FOS, HSPA1A), and the chemokine signaling pathway (e.g., RHOA, PAK1, CXCL5). Formal interaction network analysis proved biological relevance of miRNA dysregulation, as 68 differentially expressed miRNAs could be connected to 47 reciprocally expressed target genes. Our study is the first comprehensive miRNA analysis in CKD that links dysregulated miRNA expression with differential expression of genes connected to inflammation and CVD. After recent animal data suggested that targeting miRNAs is beneficial in experimental CVD, our data may now spur further research in the field of CKD-associated human CVD.  相似文献   

20.
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号