首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not being directly implicated in PheRS activity. Here, we solve a 3.6 Å cryo-electron microscopy structure of oxidized S. Typhimurium PheRS. We find that oxidation results in widespread structural rearrangements in the β-subunit editing domain and enlargement of its editing domain. Oxidization also enlarges the phenylalanyl-adenylate binding pocket but to a lesser extent. Together, these changes likely explain why oxidation leads to hyperaccurate editing and decreased misincorporation of tyrosine. Taken together, these results help increase our understanding of the survival of S. Typhimurium during human infection.  相似文献   

2.
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that provide the ribosome with aminoacyl-tRNA substrates for protein synthesis. Mutations in aaRSs lead to various neurological disorders in humans. Many aaRSs utilize editing to prevent error propagation during translation. Editing defects in alanyl-tRNA synthetase (AlaRS) cause neurodegeneration and cardioproteinopathy in mice and are associated with microcephaly in human patients. The cellular impact of AlaRS editing deficiency in eukaryotes remains unclear. Here we use yeast as a model organism to systematically investigate the physiological role of AlaRS editing. Our RNA sequencing and quantitative proteomics results reveal that AlaRS editing defects surprisingly activate the general amino acid control pathway and attenuate the heatshock response. We have confirmed these results with reporter and growth assays. In addition, AlaRS editing defects downregulate carbon metabolism and attenuate protein synthesis. Supplying yeast cells with extra carbon source partially rescues the heat sensitivity caused by AlaRS editing deficiency. These findings are in stark contrast with the cellular effects caused by editing deficiency in other aaRSs. Our study therefore highlights the idiosyncratic role of AlaRS editing compared with other aaRSs and provides a model for the physiological impact caused by the lack of AlaRS editing.  相似文献   

3.
Lee KW  Briggs JM 《Proteins》2004,54(4):693-704
Aminoacyl-tRNA synthetases (aaRSs) strictly discriminate their cognate amino acids. Some aaRSs accomplish this via proofreading and editing mechanisms. Mursinna and coworkers recently reported that substituting a highly conserved threonine (T252) with an alanine within the editing domain of Escherichia coli leucyl-tRNA synthetase (LeuRS) caused LeuRS to cleave its cognate aminoacylated leucine from tRNA(Leu) (Mursinna et al., Biochemistry 2001;40:5376-5381). To achieve atomic level insight into the role of T252 in LeuRS and the editing reaction of aaRSs, a series of molecular modeling studies including homology modeling and automated docking simulations were carried out. A 3D structure of E. coli LeuRS was constructed via homology modeling using the X-ray structure of Thermus thermophilus LeuRS as a template because the E. coli LeuRS structure is not available from X-ray or NMR studies. However, both the X-ray T. thermophilus and homology-modeled E. coli structures were used in our studies. Amino acid binding sites in the proposed editing domain, which is also called the connective polypeptide 1 (CP1) domain, were investigated by automated docking studies. The root mean square deviation (RMSD) for backbone atoms between the X-ray and homology-modeled structures was 1.18 A overall and 0.60 A for the editing (CP1) domain. Automated docking studies of a leucine ligand into the editing domain were performed for both structures: homology structure of E. coli LeuRS and X-ray structure of T. thermophilus LeuRS for comparison. The results of the docking studies suggested that there are two possible amino acid binding sites in the CP1 domain for both proteins. The first site lies near a threonine-rich region that includes the highly conserved T252 residue, which is important for amino acid discrimination. The second site is located in a flexible loop region surrounded by residues E292, A293, M295, A296, and M298. The important T252 residue is at the bottom of the first binding pocket.  相似文献   

4.
5.
Unlike many other aminoacyl-tRNA synthetases, alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout biology. While Caenorhabditis elegans cytoplasmic AlaRS (CeAlaRSc) retains the prototype structure, its mitochondrial counterpart (CeAlaRSm) contains only a residual C-terminal domain (C-Ala). We demonstrated herein that the C-Ala domain from CeAlaRSc robustly binds both tRNA and DNA. It bound different tRNAs but preferred tRNAAla. Deletion of this domain from CeAlaRSc sharply reduced its aminoacylation activity, while fusion of this domain to CeAlaRSm selectively and distinctly enhanced its aminoacylation activity toward the elbow-containing (or L-shaped) tRNAAla. Phylogenetic analysis showed that CeAlaRSm once possessed the C-Ala domain but later lost most of it during evolution, perhaps in response to the deletion of the T-arm (part of the elbow) from its cognate tRNA. This study underscores the evolutionary gain of C-Ala for docking AlaRS to the L-shaped tRNAAla.  相似文献   

6.
Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address the connection between aaRSs and mistranslation, the evolutionary divergence of tyrosine editing by phenylalanyl-tRNA synthetase (PheRS) was used as a model. Certain PheRSs are naturally error prone, most notably a Mycoplasma example that displayed a low level of specificity consistent with elevated mistranslation of the proteome. Mycoplasma PheRS was found to lack canonical editing activity, relying instead on discrimination against the non-cognate amino acid by kinetic proofreading. This mechanism of discrimination is inadequate for organisms where translation is more accurate, as Mycoplasma PheRS failed to support Escherichia coli growth. However, minor changes in the defunct editing domain of the Mycoplasma enzyme were sufficient to restore E. coli growth, indicating that translational accuracy is an evolutionarily selectable trait.  相似文献   

7.
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.  相似文献   

8.
Streptococcus pneumoniae is a causative agent of nosocomial infections such as pneumonia, meningitis, and septicemia. Penicillin resistance in S. pneumoniae depends in part upon MurM, an aminoacyl-tRNA ligase that attaches l-serine or l-alanine to the stem peptide lysine of Lipid II in cell wall peptidoglycan. To investigate the exact substrates the translation machinery provides MurM, quality control by alanyl-tRNA synthetase (AlaRS) was investigated. AlaRS mischarged serine and glycine to tRNAAla, as observed in other bacteria, and also transferred alanine, serine, and glycine to tRNAPhe. S. pneumoniae tRNAPhe has an unusual U4:C69 mismatch in its acceptor stem that prevents editing by phenylalanyl-tRNA synthetase (PheRS), leading to the accumulation of misaminoacylated tRNAs that could serve as substrates for translation or for MurM. Although the peptidoglycan layer of S. pneumoniae tolerates a combination of both branched and linear muropeptides, deletion of MurM results in a reversion to penicillin sensitivity in strains that were previously resistant. However, because MurM is not required for cell viability, the reason for its functional conservation across all strains of S. pneumoniae has remained elusive. We now show that MurM can directly function in translation quality control by acting as a broad specificity lipid-independent trans editing factor that deacylates tRNA. This activity of MurM does not require the presence of its second substrate, Lipid II, and can functionally substitute for the activity of widely conserved editing domain homologues of AlaRS, termed AlaXPs proteins, which are themselves absent from S. pneumoniae.  相似文献   

9.
Lue SW  Kelley SO 《Biochemistry》2005,44(8):3010-3016
Many aminoacyl-tRNA synthetases (aaRSs) contain two active sites, a synthetic site catalyzing aminoacyl-adenylate formation and tRNA aminoacylation and a second editing or proofreading site that hydrolyzes misactivated adenylates or mischarged tRNAs. The combined activities of these two sites lead to rigorous accuracy in tRNA aminoacylation, and both activities are essential to LeuRS and other aaRSs. Here, we describe studies of the human mitochondrial (hs mt) LeuRS indicating that the two active sites of this enzyme have undergone functional changes that impact how accurate aminoacylation is achieved. The sequence of the hs mt LeuRS closely resembles a bacterial LeuRS overall but displays significant variability in regions of the editing site. Studies comparing Escherichia coli and hs mt LeuRS reveal that the proofreading activity of the mt enzyme is disrupted by these sequence changes, as significant levels of Ile-tRNA(Leu) are formed in the presence of high concentrations of the noncognate amino acid. Experiments monitoring deacylation of Ile-tRNA(Leu) and misactivated adenylate turnover revealed that the editing active site is not operational. However, hs mt LeuRS has weaker binding affinities for both cognate and noncognate amino acids relative to the E. coli enzyme and an elevated discrimination ratio. Therefore, the enzyme achieves fidelity using a more specific synthetic active site that is not prone to errors under physiological conditions. This enhanced specificity must compensate for the presence of a defunct editing site and ensures translational accuracy.  相似文献   

10.
11.
《Journal of molecular biology》2019,431(6):1284-1297
Aminoacyl-tRNA synthetases (aaRSs), the enzymes responsible for coupling tRNAs to their cognate amino acids, minimize translational errors by intrinsic hydrolytic editing. Here, we compared norvaline (Nva), a linear amino acid not coded for protein synthesis, to the proteinogenic, branched valine (Val) in their propensity to mistranslate isoleucine (Ile) in proteins. We show that in the synthetic site of isoleucyl-tRNA synthetase (IleRS), Nva and Val are activated and transferred to tRNA at similar rates. The efficiency of the synthetic site in pre-transfer editing of Nva and Val also appears to be similar. Post-transfer editing was, however, more rapid with Nva and consequently IleRS misaminoacylates Nva-tRNAIle at slower rate than Val-tRNAIle. Accordingly, an Escherichia coli strain lacking IleRS post-transfer editing misincorporated Nva and Val in the proteome to a similar extent and at the same Ile positions. However, Nva mistranslation inflicted higher toxicity than Val, in agreement with IleRS editing being optimized for hydrolysis of Nva-tRNAIle. Furthermore, we found that the evolutionary-related IleRS, leucyl- and valyl-tRNA synthetases (I/L/VRSs), all efficiently hydrolyze Nva-tRNAs even when editing of Nva seems redundant. We thus hypothesize that editing of Nva-tRNAs had already existed in the last common ancestor of I/L/VRSs, and that the editing domain of I/L/VRSs had primarily evolved to prevent infiltration of Nva into modern proteins.  相似文献   

12.
Aminoacyl-tRNA synthetases (aaRSs) exert control over the faithful transfer of amino acids onto cognate tRNAs. Since chemical structures of various amino acids closely resemble each other, it is difficult to discriminate between them. Editing activity has been evolved by certain aaRSs to resolve the problem. In this study, we determined the crystal structures of complexes of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with L-tyrosine, p-chloro-phenylalanine, and a nonhydrolyzable tyrosyl-adenylate analog. The structures demonstrate plasticity of the synthetic site capable of binding substrates larger than phenylalanine and provide a structural basis for the proofreading mechanism. The editing site is localized at the B3/B4 interface, 35 A from the synthetic site. Glubeta334 plays a crucial role in the specific recognition of the Tyr moiety in the editing site. The tyrosyl-adenylate analog binds exclusively in the synthetic site. Both structural data and tyrosine-dependent ATP hydrolysis enhanced by tRNA(Phe) provide evidence for a preferential posttransfer editing pathway in the phenylalanine-specific system.  相似文献   

13.
Transfer of alanine from Escherichia coli alanyl-tRNA synthetase (AlaRS) to RNA minihelices that mimic the amino acid acceptor stem of tRNAAla has been shown, by analysis of variant minihelix aminoacylation activities, to involve a transition state sensitive to changes in the ‘discriminator’ base at position 73. Solution NMR has indicated that this single-stranded nucleotide is predominantly stacked onto G1 of the first base pair of the alanine acceptor stem helix. We report the activity of a new variant with the adenine at position 73 substituted by its non-polar isostere 4-methylindole (M). Despite lacking N7, this analog is well tolerated by AlaRS. Molecular dynamics (MD) simulations show that the M substitution improves position 73 base stacking over G1, as measured by a stacking lifetime analysis. Additional MD simulations of wild-type microhelixAla and six variants reveal a positive correlation between N73 base stacking propensity over G1 and aminoacylation activity. For the two ΔN7 variants simulated we found that the propensity to stack over G1 was similar to the analogous variants that contain N7 and we conclude that the decrease in aminoacylation efficiency observed upon deletion of N7 is likely due to loss of a direct stabilizing interaction with the synthetase.  相似文献   

14.
The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion.  相似文献   

15.
Accurate protein synthesis requires the hydrolytic editing of tRNAs incorrectly aminoacylated by aminoacyl-tRNA synthetases (ARSs). Recognition of cognate tRNAs by ARS is less error-prone than amino acid recognition, and, consequently, editing domains are generally believed to act only on the tRNAs cognate to their related ARSs. For example, the AlaX family of editing domains, including the editing domain of alanyl-tRNA synthetase and the related free-standing trans-editing AlaX enzymes, are thought to specifically act on tRNAAla, whereas the editing domains of threonyl-tRNA synthetases are specific for tRNAThr. Here we show that, contrary to this belief, AlaX-S, the smallest of the extant AlaX enzymes, deacylates Ser-tRNAThr in addition to Ser-tRNAAla and that a single residue is important to determine this behavior. Our data indicate that promiscuous forms of AlaX are ancestral to tRNA-specific AlaXs. We propose that former AlaX domains were used to maintain translational fidelity in earlier stages of genetic code evolution when mis-serylation of several tRNAs was possible.  相似文献   

16.
In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.  相似文献   

17.
Aminoacyl-tRNA synthetase (aaRS) catalyzes the first step of protein synthesis, producing aminoacyl-tRNAs as building blocks. Eukaryotic aaRS differs from its prokaryotic counterpart in terminal extension or insertion. Moreover, the editing function of aaRSs is an indispensable checkpoint excluding non-cognate amino acids at a given codon and ensuring overall translational fidelity. We found higher eukaryotes encode two cytoplasmic threonyl-tRNA synthetases (ThrRSs) with difference in N-terminus. The longer isoform is more closely related to the ThrRSs of higher eukaryotes than to those of lower eukaryotes. A yeast strain was generated to include deletion of the thrS gene encoding ThrRS. Combining in vitro biochemical and in vivo genetic data, ThrRSs from eukaryotic cytoplasm were systematically analyzed, and role of the eukaryotic cytoplasmic ThrRS-specific N-terminal extension was elucidated. Furthermore, the mechanisms of aminoacylation and editing activity mediated by Saccharomyces cerevisiae ThrRS (ScThrRS) were clarified. Interestingly, yeast cells were tolerant of variation at the editing active sites of ScThrRS without significant Thr-to-Ser conversion in the proteome even under significant environmental stress, implying checkpoints downstream of aminoacylation to provide a further quality control mechanism for the yeast translation system. This study has provided the first comprehensive elucidation of the translational fidelity control mechanism of eukaryotic ThrRS.  相似文献   

18.
Valyl-tRNA synthetase (ValRS) has difficulty differentiating valine from structurally similar non-cognate amino acids, most prominently threonine. To minimize errors in aminoacylation and translation the enzyme catalyzes a proofreading (editing) reaction that is dependent on the presence of cognate tRNAVal. Editing occurs at a site functionally distinct from the aminoacylation site of ValRS and previous results have shown that the 3′-terminus of tRNAVal is recognized differently at the two sites. Here, we extend these studies by comparing the contribution of aminoacylation identity determinants to productive recognition of tRNAVal at the aminoacylation and editing sites, and by probing tRNAVal for editing determinants that are distinct from those required for aminoacylation. Mutational analysis of Escherichia coli tRNAVal and identity switch experiments with non-cognate tRNAs reveal a direct relationship between the ability of a tRNA to be aminoacylated and its ability to stimulate the editing activity of ValRS. This suggests that at least a majority of editing by the enzyme entails prior charging of tRNA and that misacylated tRNA is a transient intermediate in the editing reaction.  相似文献   

19.
In the first stage of a diffusion-controlled enzymatic reaction, aminoacyl-tRNA synthetases (aaRSs) interact with cognate tRNAs forming non-specific encounters. The aaRSs catalyzing the same overall aminoacylation reaction vary greatly in subunit organization, structural domain composition and amino acid sequence. The diffusional association of aaRS and tRNA was found to be governed by long-range electrostatic interactions when the homogeneous negative potential of tRNA fits to the patches of positive potential produced by aaRS; one patch for each tRNA substrate molecule. Considering aaRS as a molecule with anisotropic reactivity and on the basis of continuum electrostatics and Smoluchowski's theory, the reaction conditions for tRNA-aaRS diffusional encounters were formulated. The domains, categorized as enzymatically relevant, appeared to be non-essential for field sculpturing at long distances. On the other hand, a set of complementary domains exerts primary control on the aaRS isopotential surface formation. Subdividing the aaRS charged residues into native, conservative and non-conservative subsets, we evaluated the contribution of each group to long-range electrostatic potential. Surprisingly, the electrostatic potential landscapes generated by native and non-conservative subsets are fairly similar, thus suggesting the non-conservative subset is developed specifically for efficient tRNA attraction.  相似文献   

20.
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号