首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Duckweeds, quick-growing aquatic plants, have been recently recognized as promising hosts for the large-scale production of recombinant proteins and as an ideal biomass feedstock for biofuel production. These possible wide-spread industrial uses of duckweeds intensified research aimed at understanding the mechanisms that control duckweed growth. Here, we describe how the hormone cytokinin affects growth. We performed a number of standard cytokinin growth- and physiological-response assays using sterile-grown colonies of Lemna gibba and Spirodela polyrhiza. Similar to land plants, cytokinin inhibited root elongation in duckweeds. Surprisingly, and in contrast to land plants, cytokinin promoted growth of aerial organs in both duckweed species, suggesting that the cytokinin growth response fundamentally differs between aquatic and land plants.  相似文献   

2.
  1. The role of herbivores in driving the structure of freshwater macrophyte communities remains poorly understood in comparison with terrestrial ecosystems. For instance, although duckweed (subfamily Lemnoideae) are globally distributed, can be locally highly abundant and ecologically dominant, and are of growing economic importance, their interactions with herbivores remain understudied.
  2. To address how herbivores may impact duckweed species composition, we here experimentally quantify the preference and performance of a common duckweed herbivore, the water-lily aphid (Rhopalosiphum nymphaeae) on four widespread duckweed species.
  3. Our two-way choice experiments reveal that aphids display a preference for Spirodela polyrhiza > Landoltia punctata = Lemna minor > > Wolffia brasiliensis. These results are rarely influenced by natal host species.
  4. By evaluating the growth of aphid populations on each duckweed species, we find that preference may be adaptive in certain ecological conditions.
  5. Quantifying the population growth rate of duckweed growing in the presence and absence of aphids revealed differential tolerance of herbivory across duckweed species.
  6. This study shows that aphids, through preferential feeding and significant differential effects on duckweed growth, can have a significant impact on duckweed population dynamics and potentially community composition.
  相似文献   

3.
Abstract

Aquatic plants have been identified as potentially useful for accumulating and bioconcentrating heavy metals. This study was developed to test the hypothesis that nutrient enrichment enhances the metal tolerance of floating macrophytes. Relative growth rates (RGR), photosynthetic pigments (chlorophyll a, b and carotenoid), malondialdehyde (MDA) content, and electrical conductivity (EC) were measured in Lemna gibba exposed to different cadmium and copper concentrations in laboratory conditions. Relative growth rates were negatively correlated with metal exposure, but nutrient addition suppressed this effect. Photosynthetic pigment levels were negatively correlated with metal exposures, and nutrient addition attenuated chlorophyll decrease in response to metal exposures. MDA content and EC also showed sharp increases at higher concentrations, indicating oxidative stress. This study indicates that nutrient enrichment increases the tolerance of Lemna gibba to metals, and that Lemna gibba is a suitable candidate for the phytoremediation of low-level copper and cadmium pollution.  相似文献   

4.
Duckweeds are promising potential sources for bioethanol production due to their high starch content and fast growth rate. We assessed the potential for four species, Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza, for bioethanol production. We also optimized a possible production procedure, which must include saccharification to convert starch to soluble sugars that can serve as a substrate for fermentation. Duckweeds were cultivated on 10% Hoagland solution for 12 days, harvested, dried, homogenized, and dissolved in solutions that were tested as substrates for bioethanol production by the yeast Saccharomyces cerevisiae. First, we optimized the saccharification process, including the ideal ratio of the enzyme used to convert starch into simple sugars. The greatest starch-to-sugar conversion was obtained when the α-amylase and amyloglucosidase was 2:1 (v/v) and with a 24 h incubation period at 50 °C. After saccharification, the solutions were incubated with the yeast, S. cerevisiae. The fermentation process was carried out for 48 h with 10% (v/v) yeast inoculum. The ethanol content was maximal approximately 24 h after the start of incubation, and the sugars and protein were minimal, with little change over the next 24 h. The final ethanol concentration obtained were 0.19, 0.17, 0.19, and 0.16 g ethanol/g dry biomass for L. punctata, L. aequinoctialis, S. polyrrhiza, and W. arrhiza respectively. We suggest that these four species of duckweed have the potential to serve sources of bioethanol and hope that the procedure we have optimized proves useful in the endeavour.  相似文献   

5.
Energy crises and environmental pollution have caused considerable concerns; duckweed is considered to be a promising new energy plant that may relieve such problems. Lemna aequinoctialis strain 6000, which has a fast growth rate and the ability to accumulate high levels of starch was grown in both Schenk & Hildebrandt medium (SH) and in sewage water (SW). The maximum growth rates reached 10.0 g DW m−2 day−1 and 4.3 g DW m−2 day−1, respectively, for the SH and SW cultures, while the starch content reached 39% (w/w) and 34% (w/w). The nitrogen and phosphorus removal rate reached 80% (SH) and 90% (SW) during cultivation, and heavy metal ions assimilation was observed. About 95% (w/w) of glucose was released from duckweed biomass hydrolysates, and then fermented by Angel yeast with ethanol yield of 0.19 g g−1 (SH) and 0.17 g g−1 (SW). The amylose/amylopectin ratios of the cultures changed as starch content increased, from 0.252 to 0.155 (SH) and from 0.252 to 0.174 (SW). Lemna aequinoctialis strain 6000 could be considered as valuable feedstock for bioethanol production and water resources purification.  相似文献   

6.
An eco-friendly and cost effective technique- phytoremediation was used to remediate contaminants from waste water. This study demonstrated that phytoremediation ability of duckweed (Lemna minor L.) to remove chloride, sulphate from Biological Oxygen Treatment (BOT) waste water of coke oven plant. The BOT water quality was assessed by analyzing physico-biochemical characters – pH, Biological oxygen demand (BOD), Chemical oxygen demand (COD), total dissolved solids (TDS) and elemental concentration. It was observed that an increase in pH value indicated an improvement of water quality. The experimental results showed that, duckweed effectively removed 30% chloride, 16% sulphate and 14% TDS from BOT waste water, which suggested its ability in phytoremediation for removal of chloride and sulphate from BOT waste water. A maximum increase of 30% relative growth rate of duckweed was achieved after 21 days of experiment. Thus, it was concluded that duckweed, an aquatic plant, can be considered for treatment of the effluent discharged from the coke oven plant.  相似文献   

7.
Salt stress has attracted increasing attention due to its toxic ability to restrict plant growth, and the photorespiration pathway has been shown to develop improved plant tolerance to abiotic stress. In this study, an Arabidopsis photorespiratory pathway gene serine: glyoxylate aminotransferase (SGAT), named as AtAGT1, was successfully overexpressed in duckweed (Lemna minor) to investigate the salinity defense capability in three transgenic overexpressed (OE) lines. Increased SGAT activity and decreased endogenous serine levels in these transgenic plant lines under salt stress resulted in enhanced protection against root abscission, higher maximum quantum yield of photosystem II (Fv/Fm), increased defense from cell damage as a result of improved cell membrane integrity, a decrease of reactive oxygen species (ROS) accumulation, and a strengthened antioxidant system. The salt tolerance in these transgenic OE lines indicates that the improvement of photorespiration stimulated the antioxidant system to scavenge ROS. The change of serine level also suggests the role of serine during salt stress. This transgenic engineering in duckweed not only introduced salt tolerance to this aquatic plant but also reveals a significant role of photorespiration during salinity stress.  相似文献   

8.
Phytoremediation is a promising means of ameliorating heavy metal pollution through the use of transgenic plants as artificial hyperaccumulators. A novel Streptococcus thermophilus γ-glutamylcysteine synthetase-glutathione synthetase (StGCS-GS) that synthesizes glutathione (GSH) with limited feedback inhibition was overexpressed in sugar beet (Beta vulgaris L.), yielding three transgenic lines (s2, s4 and s5) with enhanced tolerance to different concentrations of cadmium, zinc and copper, as indicated by their increased biomass, root length and relative growth compared with wild-type plants. Transgenic sugar beets accumulated more Cd, Zn and Cu ions in shoots than wild-type, as well as higher GSH and phytochelatin (PC) levels under different heavy metal stresses. This enhanced heavy metal tolerance and increased accumulation were likely due to the increased expression of StGCS-GS and consequent overproduction of both GSH and PC. Furthermore, when multiple heavy metal ions were present at the same time, transgenic sugar beets overexpressing StGCS-GS resisted two or three of the metal combinations (50 μM Cd-Zn, Cd-Cu, Zn-Cu and Cd-Zn-Cu), with greater absorption in shoots. Additionally, there was no obvious competition between metals. Overall, the results demonstrate the explicit role of StGCS-GS in enhancing Cd, Zn and Cu tolerance and accumulation in transgenic sugar beet, which may represent a highly promising new tool for phytoremediation.  相似文献   

9.
  1. Tree regeneration is a key process for long‐term forest dynamics, determining changes in species composition and shaping successional trajectories. While tree regeneration is a highly stochastic process, tree regeneration studies often cover narrow environmental gradients only, focusing on specific forest types or species in distinct regions. Thus, the larger‐scale effects of temperature, water availability, and stand structure on tree regeneration are poorly understood.
  2. We investigated these effects in respect of tree recruitment (in‐growth) along wide environmental gradients using forest inventory data from Flanders (Belgium), northwestern Germany, and Switzerland covering more than 40 tree species. We employed generalized linear mixed models to capture the abundance of tree recruitment in response to basal area, stem density, shade casting ability of a forest stand as well as site‐specific degree‐day sum (temperature), water balance, and plant‐available water holding capacity. We grouped tree species to facilitate comparisons between species with different levels of tolerance to shade and drought.
  3. Basal area and shade casting ability of the overstory had generally a negative impact on tree recruitment, but the effects differed between levels of shade tolerance of tree recruitment in all study regions. Recruitment rates of very shade‐tolerant species were positively affected by shade casting ability. Stem density and summer warmth (degree‐day sum) had similar effects on all tree species and successional strategies. Water‐related variables revealed a high degree of uncertainty and did not allow for general conclusions. All variables had similar effects independent of the varying diameter thresholds for tree recruitment in the different data sets.
  4. Synthesis: Shade tolerance and stand structure are the main drivers of tree recruitment along wide environmental gradients in temperate forests. Higher temperature generally increases tree recruitment rates, but the role of water relations and drought tolerance remains uncertain for tree recruitment on cross‐regional scales.
  相似文献   

10.
Life history studies have established that trade‐offs between growth and survival are common both within and among species. Identifying the factor(s) that mediate this trade‐off has proven difficult, however, especially at the among‐species level. In this study, we examined a series of potentially interrelated traits in a community of temperate‐zone passerine birds to help understand the putative causes and consequences of variation in early‐life growth among species. First, we examined whether nest predation risk (a proven driver of interspecific variation in growth and development rates) was correlated with species‐level patterns of incubation duration and nestling period length. We then assessed whether proxies for growth rate covaried with mean trait covariance strength (i.e., phenotypic correlations ( rp), which can be a marker of early‐life stress) among body mass, tarsus length, and wing length at fledging. Finally, we examined whether trait covariance strength at fledging was related to postfledging survival. We found that higher nest predation risk was correlated with faster skeletal growth and that our proxies for growth corresponded with increased trait covariance strength ( rp), which subsequently, correlated with higher mortality in the next life stage (postfledging period). These results provide an indication that extrinsic pressures (nest predation) impact rates of growth, and that there are costs of rapid growth across species, expressed as higher mean rp and elevated postfledging mortality. The link between higher levels of trait covariance at fledging and increased mortality is unclear, but increased trait covariance strength may reflect reduced phenotypic flexibility (i.e., phenotypic canalization), which may limit an organism''s capacity for coping with environmental or ecological variability.  相似文献   

11.
Abstract

Heavy metals phytoextraction potential of swollen duckweed (Lemna gibba Linn.) and lesser duckweed (Lemna aequinoctialis Welw.) was determined under greenhouse conditions by exposing to untreated industrial/municipal effluent for a period of 21?days. The nickel (Ni), lead (Pb), and cadmium (Cd) concentrations in water samples were measured weekly and in plant biomass at the termination of experiments. Significant differences (p?<?0.05) between initial and final physicochemical parameters and in heavy metal concentrations of plant and water samples were observed. Periodically measured metal concentrations in mediums revealed that removal percentage was dependent on initial Ni (2.15?mg L?1), Pb (1.51?mg L?1), and Cd (0.74?mg L?1) concentrations. The final metal removal percentages were in the sequence of Ni (97%) > Pb (94%) > Cd (90%) when treated with Lemna gibba L. as compared to control (9–12% reduction). High biomass production of Lemna gibba L. resulted in a large metal reduction in the growth medium and the total plant metal contents were in the sequence of Ni (427?µg) > Pb (293?µg) > Cd (105?µg). The lesser duckweed did not survive under experimental conditions. Based on these results, we concluded that Lemna gibba L. is a good candidate for phytoremediation of wastewater.  相似文献   

12.
Duckweeds, such as Lemna minor Linnaeus (Alismatales: Lemnaceae), are common in aquatic habitats and have been suggested to reduce larval mosquito survivorship via mechanical and chemical effects. Furthermore, pond dyes are used increasingly in aquatic habitats to enhance their aesthetics, although they have been shown to attract mosquito oviposition. The present study examined the coupled effects of L. minor and black pond dye on the oviposition selectivity of Culex pipiens Linnaeus (Diptera: Culicidae) mosquitoes in a series of laboratory choice tests. Subsequently, using outdoor mesocosms, the combined influence of duckweed and pond dye on mosquito abundances in aquatic habitats was quantified. Mosquitoes were strongly attracted to duckweed, and oviposited significantly greater numbers of egg rafts in duckweed-treated water compared with untreated controls, even when the duckweed was ground. The presence of pond dye interacted with the duckweed and further enhanced positive selectivity towards duckweed-treated water. The presence of duckweed caused significant and sustained reductions in larval mosquito numbers, whereas the relative effects of dye were not evident. The use of floating aquatic plants such as duckweed, combined with dye, may help reduce mosquito populations via the establishment of population sinks, characterized by high rates of oviposition coupled with high levels of larval mortality.  相似文献   

13.
Cryo-microprobe analysis of quench-frozen fronds of a Zn-tolerant clone of Lemna minor exposed to a high level of Zn (300 μM) showed the presence of cellular deposits consisting of Zn, Mg, K and P or Zn, K and P (Zn phytate). The same Zn-tolerant clone of Lemna minor, when exposed to a high level of Cd (30 μM), showed the presence of globular deposits consisting of Cd, K and P in mature fronds, but the immature cells of the enclosed daughter fronds contained relatively large deposits with Cd and S as the main components (Cd-phytochelatin?). Selection for Zn tolerance in a population of Lemna minor was easily achieved but selection for Cd tolerance has so far not been successful. The Zn-tolerant clone also tolerates high levels of phosphate.  相似文献   

14.
Aquatic plants have been identified as a potentially useful group for accumulating and bioconcentrating heavy metals. In the study, we investigated changes in the contents of soluble protein and photosynthetic pigments as well as the activity of antioxidant enzymes caused by copper sulfate and cadmium dichloride, respectively in duckweed (Lemna minor) during concentration-dependent exposure (0.05-20 mg l(-1)) to metal salt. The results demonstrated that exposure to high concentration heavy metals (Cu>10 mg l(-1), Cd>0.5 mg l(-1)) could result the disintegration of antioxidant system in duckweed. Also, the significant decrease of contents of soluble protein and photosynthetic pigments was observed to high-level metal stress. Additionally, cadmium was found to be more toxic than copper on plants. The outcome of this study corroborate that Lemna minor is a suitable candidate for the phytoremediation of low-level copper and cadmium contaminated waterbody.  相似文献   

15.
Climate change is driving range shifts, and a lack of cold tolerance is hypothesized to constrain insect range expansion at poleward latitudes. However, few, if any, studies have tested this hypothesis during autumn when organisms are subjected to sporadic low‐temperature exposure but may not have become cold‐tolerant yet. In this study, we integrated organismal thermal tolerance measures into species distribution models for larvae of the Giant Swallowtail butterfly, Papilio cresphontes (Lepidoptera: Papilionidae), living at the northern edge of its actively expanding range. Cold hardiness of field‐collected larvae was determined using three common metrics of cold‐induced physiological thresholds: the supercooling point, critical thermal minimum, and survival following cold exposure. Pcresphontes larvae were determined to be tolerant of chilling but generally die at temperatures below their SCP, suggesting they are chill‐tolerant or modestly freeze‐avoidant. Using this information, we examined the importance of low temperatures at a broad scale, by comparing species distribution models of Pcresphontes based only on environmental data derived from other sources to models that also included the cold tolerance parameters generated experimentally. Our modeling revealed that growing degree‐days and precipitation best predicted the distribution of Pcresphontes, while the cold tolerance variables did not explain much variation in habitat suitability. As such, the modeling results were consistent with our experimental results: Low temperatures in autumn are unlikely to limit the distribution of Pcresphontes. Understanding the factors that limit species distributions is key to predicting how climate change will drive species range shifts.  相似文献   

16.
Potentially toxic elements (PTEs) pollution has become a serious environmental threat, particularly in developing countries such as China. In response, there is a growing interest in phytoremediation studies to identify plant species as designated hyperaccumulators of PTEs in polluted soils. Poinsettia was selected as a candidate species for phytoremediation of six PTEs (Zn, Pb, Hg, Cr, As, Cu) in this study. A pot cultivation experiment (randomized incomplete block experimental design with 5 treatments and 4 blocks) was conducted using contaminated soils gathered from an industrial area in southcentral China. The bioaccumulation factor (BAF), translocation factor (TF), and bioconcentration factor were analyzed to determine the phytoremediation potential of poinsettia potted in different ratios of polluted soils. One-way ANOVA with post-hoc Tukey’s test showed that poinsettia had significant uptake of Zn, Pb, Cu (BAF < 1 and TF < 1, p < 0.05) and Hg (BAF < 1 and TF > 1, p < 0.05). Poinsettias can therefore effectively accumulate Zn, Pb, and Cu in their lateral roots while extracting and transferring Hg into their leaves. Moreover, poinsettia exhibited tolerance towards As and Cr. Interestingly, it was also observed that PTEs can inhibit the height of potted poinsettia at a certain concentration.  相似文献   

17.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

18.
Senescence is progressive bodily deterioration associated with declines in survival and fecundity in older age classes. There is great diversity in patterns of senescence across species, but these patterns can be difficult to compare formally due to variation in the absolute time scales in which species live and die: members of some species live for a matter of days, others for millennia. To address this issue, the “pace‐shape” approach was developed to decouple absolute time from analyses and instead standardize life history traits in terms of average life expectancy, facilitating intra‐ and interspecific comparisons. Here, we use this approach to distinguish the generic form of demographic trajectories (shape) from the time scale on which the trajectories occurred (pace) in three species of tiny, free‐floating aquatic plants known as duckweeds (Lemna gibba L., L. minor L., and L. turionifera Landolt), which have mean lifespans of less than a month under typical lab conditions, and exhibit age‐related declines in survivorship and reproduction. Using a randomized block design in which we tracked a final total of 430 individuals, we report differences in pace and shape among the three species. Specifically, the largest, least‐fecund, and typically longest‐lived species, L. gibba, tended to exhibit more rapid decreases in time‐standardized survivorship and fecundity compared with the other two species. This study emphasizes variation in aging patterns that can be found among plant species, including those in the same genus, and provides further validation for the utility of applying the pace and shape approach in interspecific comparisons.  相似文献   

19.
Zhang Y  Hu Y  Yang B  Ma F  Lu P  Li L  Wan C  Rayner S  Chen S 《PloS one》2010,5(10):e13527

Background

Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions.

Methodology/Principal Findings

We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species.

Conclusions/Significance

Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号