首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Urban areas are often considered to be a hostile environment for wildlife as they are highly fragmented and frequently disturbed. However, these same habitats can contain abundant resources, while lacking many common competitors and predators. The urban environment can have a direct impact on the species living there but can also have indirect effects on their parasites and pathogens. To date, relatively few studies have measured how fine‐scale spatial heterogeneity within urban landscapes can affect parasite transmission and persistence.
  2. Here, we surveyed 237 greenspaces across the urban environment of Edinburgh (UK) to investigate how fine‐scale variation in socio‐economic and ecological variables can affect red fox (Vulpes vulpes) marking behavior, gastrointestinal (GI) parasite prevalence, and parasite community diversity.
  3. We found that the presence and abundance of red fox fecal markings were nonuniformly distributed across greenspaces and instead were dependent on the ecological characteristics of a site. Specifically, common foraging areas were left largely unmarked, which indicates that suitable resting and denning sites may be limiting factor in urban environments. In addition, the amount of greenspace around each site was positively correlated with overall GI parasite prevalence, species richness, and diversity, highlighting the importance of greenspace (a commonly used measure of landscape connectivity) in determining the composition of the parasite community in urban areas.
  4. Our results suggest that fine‐scale variation within urban environments can be important for understanding the ecology of infectious diseases in urban wildlife and could have wider implication for the management of urban carnivores.
  相似文献   

2.
Pollinators and the pollination services they provide are critical for seed set and self‐sustainability of most flowering plants. Despite this, pollinators are rarely assessed in restored plant communities, where their services are largely assumed to re‐establish. Bird–pollinator richness, foraging, and interaction behavior were compared between natural and restored Banksia woodland sites in Western Australia to assess their re‐establishment in restored sites. These parameters were measured for natural communities of varying size and degree of fragmentation, and restored plant communities of high and low complexity for three years, in the summer and winter flowering of Banksia attenuata and B. menziesii, respectively. Bird visitor communities varied in composition, richness, foraging movement distances, and aggression among sites. Bird richness and abundance were lowest in fragmented remnants. Differences in the composition were associated with the size and degree of fragmentation in natural sites, but this did not differ between seasons. Restored sites and their adjacent natural sites had similar species composition, suggesting proximity supports pollinator re‐establishment. Pollinator foraging movements were influenced by the territorial behavior of different species. Using a network analysis approach, we found foraging behavior varied, with more frequent aggressive chases observed in restored sites, resulting in more movements out of the survey areas, than observed in natural sites. Aggressors were larger‐bodied Western Wattlebirds (Anthochaera chrysoptera) and New Holland Honeyeaters (Phylidonyris novaehollandiae) that dominated nectar resources, particularly in winter. Restored sites had re‐established pollination services, albeit with clear differences, as the degree of variability in the composition and behavior of bird pollinators for Banksias in the natural sites created a broad completion target against which restored sites were assessed. The abundance, diversity, and behavior of pollinator services to remnant and restored Banksia woodland sites were impacted by the size and degree of fragmentation, which in turn influenced bird–pollinator composition, and were further influenced by seasonal changes between summer and winter. Consideration of the spatial and temporal landscape context of restored sites, along with plant community diversity, is needed to ensure the maintenance of the effective movement of pollinators between natural remnant woodlands and restored sites.  相似文献   

3.
  1. Worldwide bees provide an important ecosystem service of plant pollination. Climate change and land‐use changes are among drivers threatening bee survival with mounting evidence of species decline and extinction. In developing countries, rural areas constitute a significant proportion of the country''s land, but information is lacking on how different habitat types and weather patterns in these areas influence bee populations.
  2. This study investigated how weather variables and habitat‐related factors influence the abundance, diversity, and distribution of bees across seasons in a farming rural area of Zimbabwe. Bees were systematically sampled in five habitat types (natural woodlots, pastures, homesteads, fields, and gardens) recording ground cover, grass height, flower abundance and types, tree abundance and recorded elevation, temperature, light intensity, wind speed, wind direction, and humidity. Zero‐inflated models, censored regression models, and PCAs were used to understand the influence of explanatory variables on bee community composition, abundance, and diversity.
  3. Bee abundance was positively influenced by the number of plant species in flower (p < .0001). Bee abundance increased with increasing temperatures up to 28.5°C, but beyond this, temperature was negatively associated with bee abundance. Increasing wind speeds marginally decreased probability of finding bees.
  4. Bee diversity was highest in fields, homesteads, and natural woodlots compared with other habitats, and the contributions of the genus Apis were disproportionately high across all habitats. The genus Megachile was mostly associated with homesteads, while Nomia was associated with grasslands.
  5. Synthesis and applications. Our study suggests that some bee species could become more proliferous in certain habitats, thus compromising diversity and consequently ecosystem services. These results highlight the importance of setting aside bee‐friendly habitats that can be refuge sites for species susceptible to land‐use changes.
  相似文献   

4.
Habitat complexity is one of the most important factors modulating species diversity. This feature comprises several interrelated attributes, such as number, size, and spatial arrangement of complexity‐forming elements. However, the separate and joint effects of these attributes on diversity and community structure are still not well understood. Here, we assess the relationships between several structural‐complexity attributes of the subantarctic kelp Lessonia flavicans and species richness, total abundance, and structure of kelp‐associated macrobenthic communities. We predicted that longer thalli and larger holdfasts favor greater species richness and total abundance of invertebrate organisms. To test the prediction, an observational sampling program was established in two sites of the Strait of Magellan. Uni‐ and multivariate analyses revealed both positive and negative effects of kelp structural‐complexity attributes on diversity. Holdfast diameter and maximum frond length, followed by thallus wet weight, had the strongest positive fits to species richness and total abundance; the number of stipes, on the other hand, was negatively associated with both response variables. Longer fronds were associated with greater abundances of spirorbid polychaetes. Larger holdfasts supported larger abundances of Nereididae and Terebelidae polychaetes and the limpet Nacella mytilina. Contrarily, kelps with longer fronds and more stipes supported fewer amphipods. In this way, we demonstrate that different dimensions of habitat complexity can have contrasting effects on diversity and community structure, highlighting the fundamental role of multiple dimensions of kelp habitat complexity for local biodiversity.  相似文献   

5.
Widespread plant species are expected to maintain genetic diversity and gene flow via pollen and seed dispersal. Stature is a key life history trait that affects seed and potentially pollen dispersal, with limited stature associated with limited dispersal and greater genetic differentiation. We sampled Hill’s tabletop wattle (Acacia hilliana) and curry wattle (Acacia spondylophylla), two co‐distributed, widespread, Acacia shrubs of low stature, across the arid Pilbara region of north‐western Australia. Using chloroplast sequence and nuclear microsatellite data we evaluated patterns of population genetic and phylogeographic diversity and structure, demographic signals, ratios of pollen to seed dispersal, evidence for historical refugia, and association between elevation and diversity. Results showed strong phylogeographic (chloroplast, G ST = 0.831 and 0.898 for A. hilliana and A. spondylophylla, respectively) and contemporary (nuclear, F ST = 0.260 and 0.349 for A. hilliana and A. spondylophylla, respectively) genetic structure in both species. This indicates limited genetic connectivity via seed and pollen dispersal associated with Acacia species of small stature compared to taller tree and shrub acacias across the Pilbara bioregion. This effect of stature on genetic structure is superimposed on moderate levels of genetic diversity that were expected based on widespread ranges (haplotype diversity h = 25 and 12; nuclear diversity He = 0.60 and 0.47 for A. hilliana and A. spondylophylla, respectively). Contemporary genetic structure was congruent at the greater landscape scale, especially in terms of strong genetic differentiation among geographically disjunct populations in less elevated areas. Measures of diversity and connectivity were associated with traits of greater geographic population proximity, population density, population size, and greater individual longevity, and some evidence for range expansion in A. hilliana. Results illustrate that low stature is associated with limited dispersal and greater patterns of genetic differentiation for congenerics in a common landscape and highlight the complex influence of taxon‐specific life history and ecological traits to seed and pollen dispersal.  相似文献   

6.
  1. Understanding how abiotic conditions influence dispersal patterns of organisms is important for understanding the degree to which species can track and persist in the face of changing climate.
  2. The goal of this study was to understand how weather conditions influence the dispersal pattern of multiple nonmigratory grasshopper species from lower elevation grassland habitats in which they complete their life‐cycles to higher elevations that extend beyond their range limits.
  3. Using over a decade of weekly spring to late‐summer field survey data along an elevational gradient, we explored how abundance and richness of dispersing grasshoppers were influenced by temperature, precipitation, and wind speed and direction. We also examined how changes in population sizes at lower elevations might influence these patterns.
  4. We observed that the abundance of dispersing grasshoppers along the gradient declined 4‐fold from the foothills to the subalpine and increased with warmer conditions and when wind flow patterns were mild or in the downslope direction. Thirty‐eight unique grasshopper species from lowland sites were detected as dispersers across the survey years, and warmer years and weak upslope wind conditions also increased the richness of these grasshoppers. The pattern of grasshoppers along the gradient was not sex biased. The positive effect of temperature on dispersal rates was likely explained by an increase in dispersal propensity rather than by an increase in the density of grasshoppers at low elevation sites.
  5. The results of this study support the hypothesis that the dispersal patterns of organisms are influenced by changing climatic conditions themselves and as such, that this context‐dependent dispersal response should be considered when modeling and forecasting the ability of species to respond to climate change.
  相似文献   

7.
  1. Community scientists have illustrated rapid declines of several aphidophagous lady beetle (Coccinellidae) species. These declines coincide with the establishment of alien coccinellids. We established the Buckeye Lady Beetle Blitz program to measure the seasonal occupancy of coccinellids within gardens across a wide range of landscape contexts. Following the Habitat Compression Hypothesis, we predicted that gardens within agricultural landscapes would be alien‐dominated, whereas captures of natives would be higher within landscapes encompassing a high concentration of natural habitat.
  2. Within the state of Ohio, USA, community scientists collected lady beetles for a 7‐day period across 4 years in June and August using yellow sticky card traps. All identifications were verified by professional scientists and beetles were classified by three traits: status (alien or native), mean body length, and primary diet. We compared the relative abundance and diversity of coccinellids seasonally and determined if the distribution of beetles by size, status, and diet was related to landscape features.
  3. Alien species dominated the aphidophagous fauna. Native aphidophagous coccinellid abundance was positively correlated with forest habitat while alien species were more common when gardens were embedded within agricultural landscapes. Urbanization was negatively associated with both aphidophagous alien and native coccinellids.
  4. Synthesis and Applications: Our census of native coccinellid species within residential gardens—a widespread and understudied habitat—was enabled by volunteers. These data will serve as an important baseline to track future changes within coccinellid communities within this region. We found that native coccinellid species richness and native aphidophagous coccinellid abundance in gardens were positively associated with forest habitat at a landscape scale of 2 km. However, our understanding of when and why (overwintering, summer foraging, or both) forest habitats are important remains unclear. Our findings highlight the need to understand how declining aphidophagous native species utilize forest habitats as a conservation priority.
  相似文献   

8.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

9.
For range‐restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between Iwebberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200–0.441; H o = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting in part a central‐marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in Iwebberi.  相似文献   

10.
  1. Many policies and studies globally have highlighted the pivotal role of wetland ecosystems regarding wetland biota and their ecological status. With the strengthening of wetland ecosystem management legislation and policy, wetland restoration should also consider increasing habitat diversity to improve biota. We explore whether the construction of artificial ecological islands can increase the diversity of and macroinvertebrates before assessing the effects of actively constructing islands via human intervention on wetland protection.
  2. We discuss changes in macroinvertebrate diversity (i) with and without islands, (ii) at different water‐level gradients surrounding the islands, (ⅲ) on different island substrates, and (ⅳ) at different time scales. We used ANOVA, ANOSIM, and cluster analysis to test the differences.
  3. The macroinvertebrate communities had spatially heterogeneous distributions which changes over time due to both natural and anthropogenic stresses. The establishment of islands significantly increased the community composition and biodiversity of the macroinvertebrate. Water depth and substrate affect community composition of macrozoobenthos. The abundance and diversity of macroinvertebrates can influence the biodiversity of their predators (fish and waterbirds). Potentially, the construction of islands could provide some cobenefits for the conservation of wetland fauna.
Synthesis and applications. Establishing artificial ecological islands in broad open‐water areas and increasing water‐level gradient and substrate diversity can increase microhabitat availability and habitat heterogeneity. These changes can adapt to different ecological niches of aquatic organisms, increase biodiversity, and have a positive effect on the ecological restoration of inland freshwater marshes and wetlands.  相似文献   

11.
12.
  1. Ongoing intensification and fragmentation of European agricultural landscapes dramatically reduce biodiversity and associated functions. Enhancing perennial noncrop areas holds great potential to support ecosystem services such as ant‐mediated pest control.
  2. To study the potential of newly established grassland strips to enhance ant diversity and associated functions, we used hand collection data and predation experiments to investigate differences in (a) ant community composition and (b) biocontrol‐related functional traits, and (c) natural pest control across habitats in cereal fields, old grasslands, and new grassland transects of three years of age.
  3. Ant species diversity was similar between new and old grasslands, but significantly higher in new grasslands than in surrounding cereal fields. Contrary, ant community composition of new grasslands was more similar to cereal fields and distinct from the species pool of old grasslands. The functional trait space covered by the ant communities showed the same distribution between old and new grasslands. Pest control did not differ significantly between habitat types and therefore could not be linked to the prevalence of functional ant traits related to biocontrol services in new grasslands.
  4. Our findings not only show trends of convergence between old and new grasslands, but also indicate that enhancing ant diversity through new grasslands takes longer than three years to provide comparable biodiversity and functionality.
  5. Synthesis and applications: Newly established grasslands can increase ant species richness and abundance and provide a consistent amount of biocontrol services in agroecosystems. However, three years after their establishment, new grasslands were still dominated by common agrobiont ant species and lacked habitat specialists present in old grasslands, which require a constant supply of food resources and long colony establishment times. New grasslands represent a promising measure for enhancing agricultural landscapes but must be preserved in the longer term to promote biodiversity and resilience of associated ecosystem services.
  相似文献   

13.
L Favre-Bac  C Mony  A Ernoult  F Burel  J-F Arnaud 《Heredity》2016,116(2):200-212
In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations'' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km2 agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats.  相似文献   

14.
  1. South Africa is a megadiverse country. Here, natural communities are unevenly distributed across, and within, seven distinct biomes. In such heterogeneous landscapes, understanding spatial patterns of biodiversity is essential for planning and implementing efficient conservation measures.
  2. The southern Kalahari, forming part of South Africa's savanna biome, is an arid region of peculiarly high diversity and endemism. The responses of orthopteran assemblages to changing environmental conditions across the Kalahari were investigated by comparing alpha and beta diversity levels across discrete vegetation types in the Tswalu Kalahari Reserve. The degree of association between species and specific vegetation types were also studied and how a key life history trait - dispersal ability – influences community composition was determined.
  3. This study identified 46 grasshopper species within the reserve, which compares well with richness levels in other more productive habitats of the country. Local (alpha) diversity was higher in mountain and mountain-ecotone sites versus vegetation types on the plains, and species turnover was also exceptionally high – approaching 100% - across these two groups. The few (3) dispersal limited species recovered were associated only with the mountain-ecotone group, with emergent dominance patterns suggesting that competitive rather than dispersal abilities determine the species composition of unique assemblages in the landscape.
  4. Topology plays a key role in maintaining spatial diversity across the southern Kalahari landscape. Mountains, and their ecotones, promote not only species turnover, but also richness and functional diversity. These can be viewed as islands of diversity, and should be targeted priority areas for conservation beyond the boundaries of protected areas.
  相似文献   

15.
Studying patterns of population structure across the landscape sheds light on dispersal and demographic processes, which helps to inform conservation decisions. Here, we study how social organization and landscape factors affect spatial patterns of genetic differentiation in an ant species living in mountainous regions. Using genome‐wide SNP markers, we assess population structure in the Alpine silver ant, Formica selysi. This species has two social forms controlled by a supergene. The monogyne form has one queen per colony, while the polygyne form has multiple queens per colony. The two social forms co‐occur in the same populations. For both social forms, we found a strong pattern of isolation‐by‐distance across the Alps. Within regions, genetic differentiation between populations was weaker for the monogyne form than for the polygyne form. We suggest that this pattern is due to higher dispersal and effective population sizes in the monogyne form. In addition, we found stronger isolation‐by‐distance and lower genetic diversity in high elevation populations, compared to lowland populations, suggesting that gene flow between F. selysi populations in the Alps occurs mostly through riparian corridors along lowland valleys. Overall, this survey highlights the need to consider intraspecific polymorphisms when assessing population connectivity and calls for special attention to the conservation of lowland habitats in mountain regions.  相似文献   

16.
  1. Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.
  2. A ten‐year‐old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0–10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty‐four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).
  3. Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above‐ and below‐ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow‐growing and shade‐tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf‐deciduous species compared to communities with coniferous‐evergreen species.
  4. We conclude that long‐term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.
  相似文献   

17.
AimAlthough patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers.LocationAndes, Southern Ecuador; Mt. Kilimanjaro, Tanzania.MethodsWe studied the diversity of fleshy‐fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities.ResultsWe found significant bottom‐up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature.Main conclusionsOur results illustrate the general importance of bottom‐up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.  相似文献   

18.
Rainforest conversion and expansion of plantations in tropical regions are associated with changes in animal communities and biodiversity decline. In soil, Collembola are one of the most numerous invertebrate groups that affect the functioning of microbial communities and support arthropod predators. Despite that, information on the impact of changes in land use in the tropics on species and trait composition of Collembola communities is very limited. We investigated the response of Collembola to the conversion of rainforest into rubber agroforestry (“jungle rubber”), rubber, and oil palm plantations in Jambi Province (Sumatra, Indonesia), a region which experienced one of the strongest recent deforestation globally. Collembola were sampled in 2013 and 2016 from the litter and soil layer using heat extraction, and environmental factors were measured (litter C/N ratio, pH, water content, composition of microbial community and predator abundance). In the litter layer, density and species richness in plantation systems were 25%–38% and 30%–40% lower, respectively, than in rainforest. However, in the soil layer, density, species richness, and trait diversity of Collembola were only slightly affected by land‐use change, contrasting the response of many other animal groups. Species and trait composition of Collembola communities in litter and soil differed between each of the land‐use systems. Water content and pH were identified as main factors related to the differences in species and trait composition in both litter and soil, followed by the density of micro‐ and macropredators. Dominant species of Collembola in rainforest and jungle rubber were characterized by small body size, absence of furca, and absence of intense pigmentation, while in plantations, larger species with long furca and diffuse or patterned pigmentation were more abundant. Overall, land‐use change negatively affected Collembola communities in the litter layer, but its impact was lower in the soil layer. Several pantropical genera of Collembola (i.e., Isotomiella, Pseudosinella, and Folsomides) dominated across land‐use systems, reflecting their high environmental adaptability and/or efficient dispersal, calling for studies on their ecology and genetic diversity. The decline in species richness and density of litter‐dwelling Collembola with the conversion of rainforest into plantation systems calls for management practices mitigating negative effects of the deterioration of the litter layer in rubber plantations, but even more in oil palm plantations.  相似文献   

19.
Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13‐year consecutive multi‐level N addition experiment in a semiarid steppe, we partitioned community β‐diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal β‐diversity increased, but their two components showed different patterns with increasing N input. Plant β‐diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial β‐diversity would have important implications for understanding plant–soil microbe interactions and seeking conservation strategies for maintaining regional diversity.  相似文献   

20.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号