首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Yang L  Song Y  Li X  Huang X  Liu J  Ding H  Zhu P  Zhou P 《Journal of virology》2012,86(14):7662-7676
The development of a successful vaccine against human immunodeficiency virus type 1 (HIV-1) likely requires immunogens that elicit both broadly neutralizing antibodies against envelope spikes and T cell responses that recognize multiple viral proteins. HIV-1 virus-like particles (VLP), because they display authentic envelope spikes on the particle surface, may be developed into such immunogens. However, in one way or the other current systems for HIV-1 VLP production have many limitations. To overcome these, in the present study we developed a novel strategy to produce HIV-1 VLP using stably transfected Drosophila S2 cells. We cotransfected S2 cells with plasmids encoding HIV-1 envelope, Gag, and Rev proteins and a selection marker. After stably transfected S2 clones were established, HIV-1 VLP and their immunogenicity in mice were carefully evaluated. Here, we report that HIV-1 envelope proteins are properly cleaved, glycosylated, and incorporated into VLP with Gag. The amount of VLP released into culture supernatants is comparable to those produced by insect cells infected with recombinant baculoviruses. Moreover, cryo-electron microscopy tomography revealed average 17 spikes per purified VLP, and antigenic epitopes on the spikes were recognized by the broadly neutralizing antibodies 2G12, b12, VRC01, and 4E10 but not by PG16. Finally, mice primed with DNA and boosted with VLP in the presence of CpG exhibited anti-envelope antibody responses, including ELISA-binding, neutralizing, antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated viral inhibition, as well as envelope and Gag-specific CD8 T cell responses. Thus, we conclude that HIV-1 VLP produced by the S2 expression system has many desirable features to be developed into a vaccine component against HIV-1.  相似文献   

2.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

3.
Alphavirus replicon particle-based vaccine vectors derived from Sindbis virus (SIN), Semliki Forest virus, and Venezuelan equine encephalitis virus (VEE) have been shown to induce robust antigen-specific cellular, humoral, and mucosal immune responses in many animal models of infectious disease and cancer. However, since little is known about the relative potencies among these different vectors, we compared the immunogenicity of replicon particle vectors derived from two very different parental alphaviruses, VEE and SIN, expressing a human immunodeficiency virus type 1 p55(Gag) antigen. Moreover, to explore the potential benefits of combining elements from different alphaviruses, we generated replicon particle chimeras of SIN and VEE. Two distinct strategies were used to produce particles with VEE-p55(gag) replicon RNA packaged within SIN envelope glycoproteins and SIN-p55(gag) replicon RNA within VEE envelope glycoproteins. Each replicon particle configuration induced Gag-specific CD8(+) T-cell responses in murine models when administered alone or after priming with DNA. However, Gag-specific responses varied dramatically, with the strongest responses to this particular antigen correlating with the VEE replicon RNA, irrespective of the source of envelope glycoproteins. Comparing the replicons with respect to heterologous gene expression levels and sensitivity to alpha/beta interferon in cultured cells indicated that each might contribute to potency differences. This work shows that combining desirable elements from VEE and SIN into a replicon particle chimera may be a valuable approach toward the goal of developing vaccine vectors with optimal in vivo potency, ease of production, and safety.  相似文献   

4.
5.
The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.  相似文献   

6.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) Gag protein is a major target antigen for cytotoxic-T-lymphocyte-based vaccine strategies because of its high level of conservation. The murine model has been used extensively to evaluate potential HIV-1 vaccines. However, the biology of HIV-1 Gag is somewhat different in human and murine tissues. The ability of HIV-1 Gag to form virus-like particles (VLPs) in human cells is severely curtailed in murine cells. Hence, it is not known whether immunizing mice with expression vectors encoding HIV-1 Gag provides an accurate assessment of the immunogenicity of these candidate vaccines in primates. In this report, we made use of a chimeric Moloney murine leukemia virus (MMLV)-HIV-1 Gag in which the p17 matrix domain of HIV-1 was replaced with the p15 matrix and p12 domains from MMLV. Murine cells expressing this construct released significant amounts of VLPs. The construct preserved H-2d-restricted antigenic determinants in the remaining portion of HIV-1 Gag, allowing immunogenicity studies to be performed with mice. We demonstrated that immunizing mice with plasmid DNA or adenoviral vectors encoding this chimeric Gag did not significantly increase the HIV-1 Gag-specific cellular or humoral immune response when compared to immunization with a myristoylation-incompetent version of the construct. Thus, the release of VLPs formed in vivo may not play a major role in the immunogenicity of vectors expressing HIV-1 Gag constructs.  相似文献   

8.
9.
Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4+ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.  相似文献   

10.
The Gag polyprotein of human immunodeficiency virus (HIV) (Pr55Gag) contains sufficient information to direct particle assembly events when expressed within tissue culture cells. HIV Gag proteins normally form particles at a plasma membrane assembly site, in a manner analogous to that of the type C avian and mammalian leukemia/sarcoma viruses. It has not previously been demonstrated that immature HIV capsids can form without budding through an intact cellular membrane. In this study, a rabbit reticulocyte lysate translation reaction was used to recreate HIV capsid formation in vitro. Production of HIV-1 Pr55Gag and of a matrix-deleted Gag construct resulted in the formation of a subset of Gag protein structures with an equilibrium density of 1.15 g/ml. Gel filtration chromatography revealed these Gag protein structures to be larger than 2 x 10(6) Da, consistent with the formation of large multimers or capsids. These Gag protein structures were protease sensitive in the absence of detergent, indicating that they did not contain a complete lipid envelope. Spherical structures were detected by electron microscopy within the reticulocyte lysate reaction mixtures and appeared essentially identical to immature HIV capsids or retrovirus-like particles. These results demonstrate that the HIV Gag protein is capable of producing immature capsids in a cell-free reaction and that such capsids lack a complete lipid envelope.  相似文献   

11.
12.
The Vpu protein is a human immunodeficiency virus type 1 (HIV-1)-specific accessory protein that is required for the efficient release of viral particles from infected cells. Even though HIV-2 does not encode Vpu, we found that this virus is nevertheless capable of efficiently releasing virus particles. In fact, the rate of virus release from HeLa cells transfected with a full-length molecular clone of HIV-2, ROD10, was comparable to that observed for the vpu+ HIV-1 NL4-3 isolate and was not further enhanced by expression of Vpu in trans. However, consistent with previous observations showing that HIV-2 particle release is Vpu responsive in the context of HIV-1/HIV-2 chimeric constructs; exchanging the gag-pol region of NL4-3 with the corresponding region from pROD10 rendered the resulting chimeric virus Vpu responsive. Our finding that the responsiveness of HIV-2 particle release to Vpu is context dependent suggested the presence of a Vpu-like factor(s) encoded by HIV-2. Using chimeric proviruses encoding HIV-2 gag and pol in the context of the HIV-1 provirus that were coexpressed with subgenomic HIV-2 constructs, we found that the HIV-2 envelope glycoprotein had the ability to enhance HIV-2 particle release with an efficiency comparable to that of the HIV-1 Vpu protein. Conversely, inactivation of the HIV-2 env gene in the original ROD10 clone resulted in a decrease in the rate of viral particle release to a level that was comparable to that of Vpu-deficient HIV-1 isolates. Providing the wild-type envelope in trans rescued the particle release defect of the ROD10 envelope mutant. Thus, unlike HIV-1, which encodes two separate proteins to regulate virus release or to mediate viral entry, the HIV-2 Env protein has evolved to perform both functions.  相似文献   

13.
Retroviral-derived biopharmaceuticals (RV) target numerous therapeutic applications, from gene therapy to virus-like particle (rVLP)-based vaccines. During particle formation, beside the pseudotyped envelope proteins, RV can incorporate proteins derived from the virus producer cells (VPC). This may be detrimental by reducing the amounts of the pseudotyped envelope and/or by incorporating protein capable of inducing immune responses when non-human VPC are used. Manipulating the repertoire of VPC proteins integrated onto the vector structure is an underexplored territory and should provide valuable insights on potential targets to improve vector pharmacokinetic and pharmacodynamic properties. In this work, human HEK 293 cells producing retrovirus-like particles (rVLPs) and infectious RV vectors were used to prove the concept of customizing RV composition by manipulating cellular protein content. The tetraspanin CD81 was chosen since it is significantly incorporated in the RV membrane, conferring to the vector significant immunogenicity when used in mice. RNA interference-mediated by shRNA lentiviral vector transduction was efficiently used to silence CD81 expression (up to 99%) and the rVLPs produced by knocked-down cells lack CD81. Silenced clones were analyzed for cell proliferation, morphological changes, susceptibility to oxidative stress conditions, and rVLP productivities. The results showed that the down-regulation of VPC proteins requires close monitoring for possible side effects on cellular production performance. Yet, they confirm that it is possible to change the composition of host-derived immunogens in RV by altering cellular protein content with no detriment for vector productivity and titers. This constitutes an important manipulation tool in vaccinology--by exploiting the potential adjuvant effect of VPC proteins or using them as fusion agents to other proteins of interest to be exposed on the vector membrane--and in gene therapy, by reducing the immunogenicity of RV-based vector and enhancing in vivo half-life. Such tools can also be applied to lentiviral or other enveloped viral vectors.  相似文献   

14.
For testing of recombinant virus-like particles (VLPs) in the SHIV monkey model, SIVmac239 Pr56gag precursor-based pseudovirions were modified by HIV-1 gp160 derived peptides. First, well-characterized epitopes from the HIV-1 envelope glycoprotein were inserted into the Pr56gag precursor by replacing defined regions that were shown to be dispensable for virus particle formation. Expression of these chimeric proteins in a baculovirus expression system resulted in efficient assembly and release of non-infectious, hybrid VLPs. In a second approach the HIV-1IIIB external glycoprotein gp120 was covalently linked to an Epstein-Barr virus derived transmembrane domain. Coexpression of the hybrid envelope derivative with the Pr56gag precursor yielded recombinant SIV derived Pr56gag particles with the HIV-1 gp120 firmly anchored on the VLP surface. Immunization of rhesus monkeys with either naked VLPs or VLPs adsorbed to alum induced substantial serum antibody titers and promoted both T helper cell and cytotoxic T lymphocyte responses. Furthermore, priming macaques with the corresponding set of recombinant Semliki-Forest viruses tended to enhance the immunological outcome. Challenge of the immunized monkeys with chimeric SHIV resulted in a clearly accelerated reduction of the plasma viremia as compared to control animals.  相似文献   

15.
The nucleocapsid or core particle of the hepatitis B virus has become one of the favourite recombinant vaccine carriers for foreign peptides, proteins and stimulatory oligonucleotides. The core protein consists of three regions: an N-terminal, a central and a C-terminal region that can accommodate the addition or insertion of the foreign sequences. The protamine-like C-terminal region that binds host RNA randomly during recombinant particle formation is often truncated. It is commonly thought that these truncations do not affect particle assembly. Recent studies have demonstrated that the C-terminal domains mediate a glycosaminoglycan-dependent attachment of nucleocapsids to the plasma membranes of host cells. This interaction might well contribute to the immunogenicity of nucleocapsids. Testing the hypothesis that full-length particles might be safer and superior for the induction of an immune response against the nucleocapsids and inserted sequences, requires the availability of purified particles. In this report, we detail a novel method for the synthesis and purification of full-length core particles essentially free of RNA from Escherichia coli.  相似文献   

16.
Despite almost 30 years of research, no effective vaccine has yet been developed against HIV-1. Probably such a vaccine would need to induce both an effective T cell and antibody response. Any vaccine component focused on inducing humoral immunity requires the HIV-1 envelope (Env) glycoprotein complex as it is the only viral protein exposed on the virion surface. HIV-1 has evolved several mechanisms to evade broadly reactive neutralizing antibodies. One such a mechanism involves variable loop domains, which are highly flexible structures that shield the underlying conserved epitopes. We hypothesized that removal of such loops would increase the exposure and immunogenicity of these conserved regions. Env variable loop deletion however often leads to protein misfolding and aggregation because hydrophobic patches becoming solvent accessible. We have therefore previously used virus evolution to acquire functional Env proteins lacking the V1V2 loop. We then expressed them in soluble (uncleaved) gp140 forms. Three mutants were found to perform optimally in terms of protein expression, stability, trimerization and folding. In this study, we characterized the immune responses to these antigens in rabbits. The V1V2 deletion mutant ΔV1V2.9.VK induced a prominent response directed to epitopes that are not fully available on the other Env proteins tested but that effectively bound and neutralized the ΔV1V2 Env virus. This Env variant also induced more efficient neutralization of the tier 1 virus SF162. The immune refocusing effect was lost after booster immunization with a full-length gp140 protein with intact V1V2 loops. Collectively, this result suggests that deletion of variable domains could alter the specificity of the humoral immune response, but did not result in broad neutralization of neutralization-resistant virus isolates.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies are thought be distinguished from nonneutralizing antibodies by their ability to recognize functional gp120/gp41 envelope glycoprotein (Env) trimers. The antibody responses induced by natural HIV-1 infection or by vaccine candidates tested to date consist largely of nonneutralizing antibodies. One might have expected a more vigorous neutralizing response, particularly against virus particles that bear functional trimers. The recent surprising observation that nonneutralizing antibodies can specifically capture HIV-1 may provide a clue relating to this paradox. Specifically, it was suggested that forms of Env, to which nonneutralizing antibodies can bind, exist on virus surfaces. Here, we present evidence that HIV-1 particles bear nonfunctional gp120/gp41 monomers and gp120-depleted gp41 stumps. Using a native electrophoresis band shift assay, we show that antibody-trimer binding predicts neutralization and that the nonfunctional forms of Env may account for virus capture by nonneutralizing antibodies. We hypothesize that these nonfunctional forms of Env on particle surfaces serve to divert the antibody response, helping the virus to evade neutralization.  相似文献   

18.
19.
Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1DeltaV2), followed by boosting with oligomeric protein (o-gp140TV1DeltaV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.  相似文献   

20.
Human immunodeficiency virus (HIV-1) envelope glycoprotein subunits, such as the gp120 exterior glycoprotein, typically elicit antibodies that neutralize T-cell-line-adapted (TCLA), but not primary, clinical isolates of HIV-1. Here we compare the immunogenicity of gp120 and soluble stabilized trimers, which were designed to resemble the functional envelope glycoprotein oligomers of primary and TCLA HIV-1 strains. For both primary and TCLA virus proteins, soluble stabilized trimers generated neutralizing antibody responses more efficiently than gp120 did. Trimers derived from a primary isolate elicited antibodies that neutralized primary and TCLA HIV-1 strains. By contrast, trimers derived from a TCLA isolate generated antibodies that neutralized only the homologous TCLA virus. Thus, soluble stabilized envelope glycoprotein trimers derived from primary HIV-1 isolates represent defined immunogens capable of eliciting neutralizing antibodies that are active against clinically relevant HIV-1 strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号