首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla   总被引:1,自引:0,他引:1  
Proton NMR spectroscopy at 7 Tesla (7T) was evaluated as a new method to quantify human fat composition noninvasively. In validation experiments, the composition of a known mixture of triolein, tristearin, and trilinolein agreed well with measurements by (1)H NMR spectroscopy. Triglycerides in calf subcutaneous tissue and tibial bone marrow were examined in 20 healthy subjects by (1)H spectroscopy. Ten well-resolved proton resonances from triglycerides were detected using stimulated echo acquisition mode sequence and small voxel ( approximately 0.1 ml), and T(1) and T(2) were measured. Triglyceride composition was not different between calf subcutaneous adipose tissue and tibial marrow for a given subject, and its variation among subjects, as a result of diet and genetic differences, fell in a narrow range. After correction for differential relaxation effects, the marrow fat composition was 29.1 +/- 3.5% saturated, 46.4 +/- 4.8% monounsaturated, and 24.5 +/- 3.1% diunsaturated, compared with adipose fat composition, 27.1 +/- 4.2% saturated, 49.6 +/- 5.7% monounsaturated, and 23.4 +/- 3.9% diunsaturated. Proton spectroscopy at 7T offers a simple, fast, noninvasive, and painless method for obtaining detailed information about lipid composition in humans, and the sensitivity and resolution of the method may facilitate longitudinal monitoring of changes in lipid composition in response to diet, exercise, and disease.  相似文献   

2.
Recent investigations indicate that the type and amount of polyunsaturated fatty acids (PUFA) influence bone formation in animal models and osteoblastic cell functions in culture. In growing rats, supplementing the diet with omega-3 PUFA results in greater bone formation rates and moderates ex vivo prostaglandin E(2) production in bone organ cultures. A protective effect of omega-3 PUFA on minimizing bone mineral loss in ovariectomized rats has also been reported. The actions of omega-3 fatty acids on bone formation appear to be linked to altering osteoblast functions. Herein we describe experiments with MC3T3-E1 osteoblast-like cells that support findings in vivo where omega-3 PUFA modulated COX-2 protein expression, reduced prostaglandin E(2) production, and increased alkaline phosphatase activity. Other studies indicate that the dietary source of PUFA may affect protein expression of Cbfa1 and nodule formation in fetal rat calvarial cells.  相似文献   

3.
Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, ≥C20) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A–H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C20, C22, omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50–61% TFA after 7 days of growth in basal medium at 20 °C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20–30% TFA) and the sum of saturated FA was in the range of 32–51%. β,β-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils.  相似文献   

4.
Changes of the individual phospholipid fatty acid composition under the normothermal short-time ischemia with following reperfusion were investigated. Modification of the phospholipid fatty acid (FA) composition under ischemia-reperfusion didn't bear total character and was more manifested in cardiolipin (CL) and phosphatidylethanolamine (PE). The decrease of short chain FA in these phospholipids (more than by 50%) was observed. The amount of unsaturated FA included in CL increased and whole the saturated ones decreased. This caused the rise of the unsaturation index. The selective type of the changes suggested that they had an adaptive character. The addition of the N-stearoilethanolamine (NSE) into the perfusion solution caused a normalization of saturated and unsaturated FA relative amount, as well as of omega-3 and omega-9 FA level in CL. The modification of the FA composition of phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylinositol (PI) was also found. The quantity of arachidonic acid in PC increased by 26% and the amount of stearinic acid enhanced in PS. The labeled N-([1-(14)C]-palmitoil)-ethanolamine was found in different lipid classes of the rat organs immediately 5 min following intraperitoneal injection. Approximately 1/3 of all incorporated label accumulated in the phospholipid fraction, and more than 50% of the labels were found in CL.  相似文献   

5.
The aim of this investigation was to characterise the fatty acid composition within intramuscular fat (IMF) of two muscles (breast and thigh) from 28 pheasants, ten wild ducks and 27 black coots from Slovakia. A high variability for all single fatty acids (FA) and the total fat concentration in muscles of wild birds was identified. Black coots deposited the highest fat in breast muscle whereas wild ducks and pheasants accumulated more lipids in thigh muscle. In general, the content of polyunsaturated fatty acids (PUFA) of the IMF in wild bird muscles was high, and the saturated FA concentration was lower compared with muscles of domestic farm animals. The ratio between PUFA and saturated fatty acids (PSQ) ranked between 0.6 and 1.2, and the ratio of n-6/n-3 fatty acid was favourably low in black coot and wild pheasants (3.2 and 2.9, respectively). Farmed pheasants had increased IMF and more saturated and n-6 fatty acids deposited in thigh muscle but not in breast muscle.  相似文献   

6.
Dietary fatty acids have cholesterol lowering, antiatherogenic, and antiarrhythmic properties that decrease the risk of myocardial infarction (MI). This study was designed to study the effects of various oils rich in either polyunsaturated (omega-3 or omega-6) fatty acids (PUFA) or saturated fatty acids (SFA) on the severity of experimentally induced MI. Male albino Sprague-Dawley rats (100-150 g; n = 20) were fed diets enriched with fish oil (omega-3 PUFA), peanut oil (omega-6 PUFA), or coconut oil (SFA) for 60 days. Experimental MI was induced with isoproterenol. Mortality rates; serum enzymes aspartate amino transferase; alanine amino transferase; creatine phosphokinase (CPK); lipid profiles in serum, myocardium, and aorta; peroxide levels in heart and aorta; activities of catalase and superoxide dismutase; and levels of glutathione were measured. The results demonstrated that mortality rate, CPK levels, myocardial lipid peroxides, and glutathione levels were decreased in the omega-3 PUFA treated group. Maximum increase in parameters indicative of myocardial damage was seen in the coconut oil group. These findings suggest that dietary omega-3 PUFA offers maximum protection in experimentally induced MI in comparison to omega-6 PUFA and SFA enriched diets. SFA was found to have the least protective effect.  相似文献   

7.
Dietary fat influences the physico-chemical properties of meat, and fatty acid (FA) composition may have implications on human health. The objectives of the experiment were to study tissue FA partitioning and the effect of dietary fat source on tissue FA composition. Seventy crossbred gilts (61.8 ± 5.2 kg BW average) were fed one of seven treatments: a diet containing a very low level of fat (no fat (NF)) and six fat-supplemented diets (10%: tallow (T), high-oleic sunflower oil (HOSF), sunflower oil (SFO), linseed oil (LO), fat blend (FB: 55% tallow, 35% SFO, 10% LO) and fish oil blend (FO: 40% fish oil, 60% LO). Differential tissue FA depositions were observed, with flare fat being the most saturated, followed by intermuscular, and subcutaneous being the least saturated. Monounsaturated fatty acid (MUFA) deposition showed an opposite tissue pattern. Subcutaneous fat showed the highest MUFAs, intermuscular fat showed intermediate values and flare fat showed the lowest MUFAs. Intramuscular polyunsaturated fatty acid (PUFA) content was less susceptible to dietary treatment modifications compared with other depots. Significant tissue FA modifications were observed due to dietary treatments, mainly in diets rich in PUFA. The saturated fatty acids (SFA) were high in NF-fed and low in HOSF-fed animals, MUFA were high in HOSF-fed and low in SFO-, LO- and FO-fed animals, while PUFA were high in SFO- and LO-fed and low in HOSF-, T- and NF-fed animals. Pigs fed LO and FB showed detectable levels of EPA, which depended on the linolenic content of the diet. The only effective way to increase tissue DHA contents was to add DHA in the diet through FO feeding. Araquidonic acid was high in SFO diets and low in LO and FB diets, and also high in intramuscular fat compared with other tissues. EPA and DHA were also high in intramuscular fat compared with other fat depots. The deposition of oleic and linoleic acids depended on the composition of dietary fat, as their deposition varied between diets, even at similar levels of intake of each FA. The NF diet resulted in the greatest proportion of SFAs (palmitic and stearic) of all treatments tested. SFAs were less susceptible to modification than MUFA in response to the different PUFA levels supplemented in the diet. T resulted in less fat deposition in some of the fat depots and more in others, suggesting that T could partition fat differently among fat depots.  相似文献   

8.
Quality of pork depends on genotype, rearing and pre- and post-slaughter conditions. However, no information is available on rearing system changes and oleic acid supplementation on carcass characteristics and fatty acid (FA) profile of pork from the Alentejano (AL) pig, an obese breed. This study evaluates the effects of feeding low (LO) or high oleic acid diets (HO) to AL pigs reared in individual pens (IND) or outdoor (OUT) with access to pasture. Carcass composition was obtained and longissimus dorsi and semimembranosus samples were collected to analyse chemical composition and neutral and polar intramuscular lipids FA profile by gas chromatography. Statistical analysis was performed by a two-way ANOVA for rearing system and diet effects. OUT-reared pigs presented leaner carcasses than IND-reared ones. Both muscles presented lower intramuscular lipid content in OUT-reared pigs. Treatments affected the FA profile of muscles. Overall, OUT-reared pigs presented lower n-6/n-3 FA ratios, whereas pigs fed the HO diet exhibited lower saturated fatty acids (SFA), higher monounsaturated fatty acids (MUFA) levels and lower thrombogenic indexes on neutral intramuscular lipids than LO-fed pigs. On the polar fraction, OUT-reared pigs presented lower SAT and n-6/n-3 FA ratio, and higher polyunsaturated fatty acids (PUFA) levels on both muscles. Pigs fed the HO diet exhibited higher MUFA and lower PUFA levels on both muscles, and lower SAT levels on semimembranosus. This study shows rearing system and oleic acid supplementation have complementary effects and influence carcass composition and the nutritional quality of meat.  相似文献   

9.
Severe endothelial abnormalities are a prominent feature in sepsis with cytokines such as tumor necrosis factor (TNF)alpha being implicated in the pathogenesis. As mimic to inflammation, human umbilical vascular endothelial cells (HUVEC) were incubated with TNFalpha for 22 h, in the absence or presence of the omega-6 fatty acid (FA), arachidonic acid (AA), or the alternative omega-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). TNFalpha caused marked alterations in the PUFA profile and long chain PUFA content of total phospholipids (PL) decreased. In contrast, there was a compensatory increase in mead acid [MA, 20:3(omega-9)], the hallmark acid of the essential fatty acid deficiency (EFAD) syndrome. Corresponding changes were noted in phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but not in the sphingomyelin fraction. Supplementation with AA, EPA, or DHA markedly increased the respective FA contents in the PL pools, suppressed the increase in MA, and resulted in a shift either toward further predominance of omega-6 or predominance of omega-3 FA. We conclude that short-term TNFalpha incubation of HUVEC causes an EFAD state hitherto only described for long-term malnutrition, and that endothelial cells are susceptible to differential influence by omega-3 versus omega-6 FA supplementation under these conditions.  相似文献   

10.
1H and 13C NMR spectroscopy was used to evaluate the degree of unsaturation and the cholesterol/cholesteryl ester ratio on the total lipid fractions obtained from human renal and cerebral tissues. The unsaturated/saturated fatty acid ratio was determined in the 13C NMR spectra from the ratio of the integrated areas of the resonances at 14.13 and 14.17 ppm assigned to the terminal methyl groups of saturated and unsaturated FA, respectively, and is validated by the traditional but time consuming gas-chromatographic analysis. Cholesteryl esters are easily discriminated in the total lipid fraction extracted from human tissues by means of the well-resolved component at 0.99 ppm (1H NMR spectra) of the resonance at about 1.00 ppm generally assigned to free cholesterol. The role of NMR spectroscopy in the study of lipidic biochemistry of human tissues is confirmed.  相似文献   

11.
Yoshida S  Yoshida H 《Biopolymers》2003,70(4):604-613
The aim of this study was to develop a nondestructive method to quantitate relative amounts of n-3 and n-6 polyunsaturated fatty acid (PUFA) species in vegetable oils and oil seeds using Fourier transform IR spectroscopy (FTIR). The alkene Cbond;H stretching vibrations of unsaturated fatty acids in oils showed IR absorption bands with various peak positions and intensities at around 3010 cm(-1), depending on the extent of unsaturation and PUFA species. With the aid of partial least-squares regression analysis, the FTIR measurement could practically predict the content of each PUFA species in the oil to be tested. A calculation method was also presented to directly find PUFA species in oils from the FTIR spectra. This technique was applied to dried soybean seeds to demonstrate a nonhomogenous distribution of saturated fatty acids and PUFAs, as well as glycans, in soybean cross sections.  相似文献   

12.
A series of unusual odd-chain fatty acids (OC-FA) were identified in two thraustochytrid strains, TC 01 and TC 04, isolated from waters off the south east coast of Tasmania, Australia. FA compositions were determined by capillary GC and GC–MS, with confirmation of polyunsaturated fatty acids (PUFA) structure performed by analysis of 4,4-dimethyloxazoline derivatives. PUFA constituted 68–74% of the total FA, with the essential PUFA; eicosapentaenoic acid (20:5ω3, EPA), arachidonic acid (20:4ω6, AA) and docosahexaenoic acid (22:6ω3, DHA), accounting for 42–44% of the total FA. High proportions of the saturated OC-FA 15:0 (7.1% in TC 01) and 17:0 (6.2% in TC 04) were detected. The OC-FA 17:1ω8 was present at 2.8% in TC 01. Of particular interest, the C21 PUFA 21:5ω5 and 21:4ω7 were detected at 3.5% and 4.1%, respectively, in TC 04. A proposed biosynthesis pathway for these OC-PUFA is presented. It is possible that the unsaturated OC-PUFA found previously in a number of marine animals were derived from dietary thraustochytrids and they could be useful biomarkers in environmental and food web studies.  相似文献   

13.
To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.  相似文献   

14.
As a first step in determining the mechanism of action of specific fatty acids on immunological function of macrophages, a comparative study of the effect of long-chain polyunsaturated fatty acids (PUFA) in the medium was conducted in two macrophage cell lines, J774A.1 and WEHI-3. The baseline fatty-acid profiles of the two cell lines differed in the % distribution of saturated (SFA) and unsaturated fatty acids (UFA). J774A.1 cells had a higher % of SFA (primarily palmitic acid) than WEHI-3 cells. Conversely, WEHI-3 cells had a higher % of UFA (primarily oleic acid) than J774A.1 cells. Neither cell line had detectable amounts of alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA). The most abundant polyunsaturated fatty acid in both cells lines was arachidonic acid (AA). The efficiency of transport of fatty acids from the medium to the macrophages by two delivery vehicles (BSA complexes and ethanolic suspensions) was compared. Overall, fatty acids were transported satisfactorily by both delivery systems. Alpha-linolenic acid and doscosahexenoic acid (DHA) were transported more efficiently by the ethanolic suspension system. Linoleic acid (LA) was taken up more completely than ALA, and DHA was taken up more completely than EPA by both cell cultures and delivery systems. A dose-response effect was demonstrated for LA, ALA, EPA and DHA in both J774A.1 and WEHI-3 cells. Addition of polyunsaturated fatty acids (PUFA) to the cell cultures modified the total lipid fatty acid composition of the cells. The presence of ALA in the culture medium resulted in a significant decrease in AA in both cell lines. The omega-3/omega-6 fatty acid ratio (omega-3/omega-6), polyunsaturated/saturated fatty acid ratio (P/S), and unsaturation index (UI) increased directly with the amount of PUFA and omega-3 fatty acid provided in the medium. The results indicate that the macrophage cell lines have similar, but not identical, fatty acid profiles that may be the result of differences in fatty acid metabolism. These distinctions could in turn produce differences in immunological function. The ethanol fatty-acid delivery system, when compared with the fatty acid-BSA complex system, is preferable for measurement of dose-response effects, because the cellular fatty acid content increased in proportion to the amount of fatty acid provided in the medium. Similar dose-response results were observed in a previous in vivo study using flaxseed, rich in ALA, as a source of PUFA.  相似文献   

15.
Sheep rearing on mountain pastures is an ancestral tradition in northwestern Slovenia. The indigenous Bovec sheep are widespread there and are well adapted to the rough Alpine rearing conditions. Every year, after weaning, the sheep start grazing in the lowlands (L) and then gradually move to mountain pastures, and finally, to the highland (H) pastures of the Alps. Grazing positively affects the fatty acid (FA) composition in sheep milk fat with increased availability of polyunsaturated FA (PUFA) in grass, and subsequently, in milk. Consequently, the objective of this work was to study the FA profile in sheep milk during grazing in four geographical areas in the Alps. A total of 15 ewes of the Bovec sheep breed were randomly selected and milk samples from these ewes were taken at four different pasture locations that differed with regard to altitude: the L pasture location at an altitude of 480 m, the mountain pastures (M1 and M2) at altitudes of 1100 to 1300 m and 1600 to 1900 m, respectively, and the H pastures at altitudes of 2100 to 2200 m. Milk samples from the ewes were taken during the grazing season from April to September. The chemical and FA composition of the milk samples from each pasture location were determined. There were significant differences in the concentrations of FA among the L, M1, M2 and H milk samples. We observed decreases of the concentrations of saturated FA (SFA) in milk from L to H pastures. The concentration of α-linolenic FA, monounsaturated FA (MUFA), PUFA and n-3 PUFA in milk were increased significantly with pasture altitude. The n-6/n-3 PUFA ratio was reduced by the change of pasture altitude with the lowest value at the M1 pasture (1.5). The concentrations of total SFA decreased significantly and was lowest at the L pasture. Our results underline the importance of the effect of grazing in the Alpine region associated with pasture altitude on the FA profile of sheep milk. The first variation in FA concentration in sheep milk occurred between L and M1, although it was more evident on H pastures in the Alpine mountains. Changes of the FA profile in sheep milk due to pasture altitude were related to variation in FA concentration in the pasture and the botanical composition of the pasture location.  相似文献   

16.
Triacylglycerol profiling of marine microalgae by mass spectrometry   总被引:1,自引:0,他引:1  
We present a method for the determination of triacylglycerol (TAG) profiles of oleaginous saltwater microalgae relevant for the production of biofuels, bioactive lipids, and high-value lipid-based chemical precursors. We describe a technique to remove chlorophyll using quick, simple solid phase extraction (SPE) and directly compare the intact TAG composition of four microalgae species (Phaeodactylum tricornutum, Nannochloropsis salina, Nannochloropsis oculata, and Tetraselmis suecica) using MALDI time-of-flight (TOF) mass spectrometry (MS), ESI linear ion trap-orbitrap (LTQ Orbitrap) MS, and 1H NMR spectroscopy. Direct MS analysis is particularly effective to compare the polyunsaturated fatty acid (PUFA) composition for triacylglycerols because oxidation can often degrade samples upon derivatization. Using these methods, we observed that T. suecica contains significant PUFA levels with respect to other microalgae. This method is applicable for high-throughput MS screening of microalgae TAG profiles and may aid in the commercial development of biofuels.  相似文献   

17.
《Journal of Asia》2022,25(3):101951
The fatty acid (FA) profile, nutritional index, and thermal properties of lipids from Tenebrio molitor and Hermetia illucens larvae were studied. T. molitor and H. illucens larvae had high lipid contents (respectively 28.8% and 42.6%), saturated (25.0% and 55.8%), monounsaturated (MUFA) (39.2% and 28.3%), and polyunsaturated (PUFA) fatty acids (35.8% and 15.9%). Both larvae fats contained beneficial ω-3, ω-6, and ω-9 FA. For T. molitor and H. illucens, the lipid nutritional indices were atherogenicity indices 0.68 and 2.75, thrombogenicity indices 0.58 and 0.74, and health-promoting indices 3.51 and 0.80 hypocholesterolemic/hypercholesterolemic acid ratio 1.38 and 0.23, suggesting the nutritional superiority of T. molitor larvae fat. Regioisomeric distribution analysis showed that PUFA in H. illucens larvae fat are concentrated on the sn-1,3 positions, whereas those in T. molitor larvae fat are distributed in all three positions. The thermal stability and crystallisation profiles differed for both larvae fats and demonstrated their potential use in thermally processed foods.  相似文献   

18.
In one of the most extensive analyses to date we show that the balance of diet n-3 and n-6 polyunsaturated fatty acids (PUFA) is the most important determinant of membrane composition in the rat under 'normal' conditions. Young adult male Sprague-Dawley rats were fed one of twelve moderate-fat diets (25% of total energy) for 8weeks. Diets differed only in fatty acid (FA) profiles, with saturate (SFA) content ranging 8-88% of total FAs, monounsaturate (MUFA) 6-65%, total PUFA 4-81%, n-6 PUFA 3-70% and n-3 PUFA 1-70%. Diet PUFA included only essential FAs 18:2n-6 and 18:3n-3. Balance between n-3 and n-6 PUFA is defined as the PUFA balance (n-3 PUFA as % of total PUFA) and ranged 1-86% in the diets. FA composition was measured for brain, heart, liver, skeletal muscle, erythrocytes and plasma phospholipids, as well as adipose tissue and plasma triglycerides. The conformer-regulator model was used (slope=1 indicates membrane composition completely conforming to diet). Extensive changes in diet SFA, MUFA and PUFA had minimal effect on membranes (average slopes 0.01, 0.07, 0.07 respectively), but considerable influence on adipose tissue and plasma triglycerides (average slopes 0.27, 0.53, 0.47 respectively). Diet balance between n-3 and n-6 PUFA had a biphasic influence on membrane composition. When n-3 PUFA<10% of total PUFA, membrane composition completely conformed to diet (average slope 0.95), while diet PUFA balance>10% had little influence (average slope 0.19). The modern human diet has an average PUFA balance ~10% and this will likely have significant health implications.  相似文献   

19.
We examined trophic positions and fatty acid concentrations of riverine, lacustrine, and aquaculture diet and fish in Austrian pre-alpine aquatic ecosystems. It was hypothesized that dietary fatty acid (FA) profiles largely influence the FA composition of the salmonids Salvelinus alpinus, Salmo trutta, and Oncorhynchus mykiss. We analyzed trophic positions using stable isotopes (δ15N) and tested for correlations with polyunsaturated fatty acid (PUFA) concentrations. Gut content analysis revealed benthos (rivers), pellets (aquaculture), and zooplankton (lakes) as the predominant diet source. Results of dorsal muscle tissues analysis showed that the omega-3 PUFA, docosahexaenoic acid (DHA; 22:6n − 3), was the mostly retained PUFA in all fish of all ecosystems, yet with the highest concentrations in S. alpinus from aquaculture (mean: 20 mg DHA/g dry weight). Moreover, we found that eicosapentaenoic acid (EPA; 20:5n − 3) in fish of natural habitats (rivers, lakes) was the second most abundant PUFA (3–5 mg/g DW), whereas aquaculture-raised fish had higher concentrations of the omega-6 linoleic acid (18:2n – 6; 9–11 mg/g DW) than EPA. In addition, PUFA patterns showed that higher omega-3/-6 ratios in aquacultures than in both riverine and lacustrine fish. Data of this pilot field study suggest that salmonids did not seem to directly adjust their PUFA to dietary PUFA profiles in either natural habitats or aquaculture and that some alterations of PUFA are plausible. Finally, we suggest that trophic positions of these freshwater salmonids do not predict PUFA concentrations in their dorsal muscle tissues.  相似文献   

20.
Prior to hibernation, mammals accumulate large amounts of fat in their bodies. In temperate mammalian species, hibernation is improved by increasing the levels of poly-unsaturated fatty acids (PUFA) in the body. The saturation of fatty acids (FA) in both white adipose tissue (WAT) and membrane phospholipids of mammals often reflects their diet composition. We found that the greater mouse-tailed bat (Rhinopoma microphyllum) accumulates large amounts of fat at the end of summer by gradually shifting to a fat-rich diet (queen carpenter ants, Camponotus felah). PUFA are almost absent in this diet (<1 % of total FA), which contains a high fraction of saturated (SFA) and mono-unsaturated (MUFA) fatty acids. We found similar low levels of PUFA in mouse-tailed bat WAT, but not in their heart total lipids. The expression of two appetite-stimulating (orexigenic) hypothalamic neuropeptides, AgRP and NPY, increased in parallel to the shift in diet and with fat gain in these bats. To the best of our knowledge, this is the only documented example of specific pre-hibernation diet in bats, and one which reveals the most saturated FA composition ever documented in a mammal. We suggest that the increase in expression levels of NPY and AgRP may contribute to the observed diet shift and mass gain, and that the FA composition of the bat’s specialized diet is adaptive in the relatively high temperatures we recorded in both their winter and summer roosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号